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Parametric methods

Assume some model (Gaussian, Bernoulli, Multinomial,
logistic, network of logistic units, Linear, Quadratic) with fixed
number of parameters

— Gaussian Bayes, Naive Bayes, Logistic Regression, Neural
Networks

Estimate parameters (u1,02,0,w,[3) using MLE/MAP and plug in

Pro — need few data points to learn parameters
Con — Strong modeling assumptions, not satisfied in practice



Non-Parametric methods

Typically don’t make any modeling assumptions

As we have more data, we should be able to learn more
complex models

Let number of parameters scale with number of training data

Some nonparametric methods

Classification: Decision trees, k-NN (k-Nearest Neighbor)
classifier B

Density estimation: k-NN, Histogram, Kernel density
estimate

Regression: Kernel regression




k-NN classifier
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k-NN classifier

Test document
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k-NN classifier (k=5)

Test document

What should we predict? ...
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Average? Majority? Why?

6



k-NN classifier

» Optimal Classifier: f"(z) = argmaxP(y|z)
arg myaxP(x\y)P(y)

* k-NN Classifier: fpnyn(z) arg max PkNN x|y)P(y)
)

- h

— Pyn(zly) = @(__) # training pts of class y Z k, =k

Ty amongst k NNs of x Yy ———
L—— # total training pts of classy
ny



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best k?

1-NN classifier decision boundary Voronoi

Diagram

As k increases, boundary becomes smoother (less jagged).
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What is the best k?

Approximation vs. Stability (aka Bias vs Variance) Tradeoff
——— [ | U

* Larger K=> predicted label is more stable
 Smaller K => predicted label can approximate best classifier
well given enough data
\(m'h;’J eM (\0)'01
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k-NN density estimation

Not very popular for density
estimation — spiked estimates

0 0.5 1
k acts as a smoother.
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Histogram density estimate

Partition the feature space into distinct bins with widths A, and

count the number of observations, n;, in each bin.

T

. ;
p(x) Y

rcBin,

“Local relative frequency”

e Often, the same width is
used for all bins, é_:_A_

* A acts as a smoothing
parameter.

[m——
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A=0.0
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Effect of histogram bin width

—~ U2
plx) = A 1:ceBin@-

# bins = 1/A
Small A, large #bins Sl N '
Good fit but unstable
(few points per bin) 00 e :
Small bias, Large variance” 5 T -
Large A, small #bins 0 A—j
Poor fit but stable ; 0.5 1

5 .
(many points per bin) A =0.25
“Large bias, Small variance” )
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Histogramas MLE & — &~

gz 2, |
0 ‘Z’. )
Underlying model — density is constant on each bin
Parameters p;, : density in bin j Z P
Note ij =1/A since /p(fv)dfv =1 E
| e

Maximize likelihood of data under probability model with
parameters p;

p(x) = arg %@?P()fla . Xn,{pg UA ij =1/A

* Show that histogram density estimate is MLE under this

model = Categorical(p{4, po 4, p34,...)
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Kernel density estimate

* Histogram — blocky estimate

1 Z] 11y cBin, n"

—

B " hA

* Kernel density estimate aka “Parzen/moving window

method”
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Kernel density estimate

I, .

- Y j—b(j-?l“ £A
n — T s
—_— A

e (x) = more generall
p(x) A - g y
\ J X —=x
K (57)
A
boxcar kernel :
1
K(z)==I(z),
— 2 — ) .
| I— — 1 1 X;—A Xj Xj + A
20
Gaussian kernel :
Klz)= L O 1 A
ey~ V/}




Kernels

Any kernel
boxcar kernel : fun.Ct!OH that
| satisfies
K(2) = 51(z)
- T 1 W1 = K(z) > 0,
N /K(x)dw = 1
(Gaussian kernel :
7 | gy —
K(z) = —e /2 1
— \"'/2/
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Kernel density estimation

* Place small "bumps" at each data point, determined by the
kernel function.
* The estimator consists of a (normalized) "sum of bumps”.

12 X3— N
@ hkz K( A Img src: Wikipedia

Gaussian bumps (red) around six data points and their sum (blue)

* Note that where the points are denser the density estimate
will have higher values.
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Choice of Kernels

boxcar kernel :

K(z) = é[(r),

(Gaussian kernel :

% 1 2
K(z) = —e /2
V2T

Finite support

—only need local
points to compute
estimate

Infinite support

- need all points to
compute estimate

-But quite popular
since smoother
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Choice of kernel bandwidth
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Image Source:
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Histograms vs. Kernel density
estimation
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A = h acts as a smoother.
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Nonparametric density estimation

Mn'wjﬂla)’v:(
i pla) = —1__p; bins
* Histogram oA xeBin,
. ~ Ny
Kernel density est plr) = ~ C o)

Fix A, estimate number of points within A of x (n; or
n,) from data

Fix n,= k, estimate A from data (volume of ball
around x that contains k training pts)

* k-NN density est plz) = ng@
k,x



Local Kernel Regression

* What is the temperature

in the room? at location x?
° °
° ’... ° ’..
° o _©
° .0 ’:: ® .O:I
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°
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Average "Local” Average



Nonparametric estimator '-,-::-..’..‘:.',
Nadaraya-Watson Kernel Estimator
v
R n i (X;Xi) —
(X)) =Y w;Y; Where wi(X) = — (XX,
i=1 " i=1 4% h )

Weight each training point based on distance to test
point

Boxcar kernel yields boxcar kernel :

local average K(x) = +1(2)
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Choice of kernel bandwidth h

h

1

Too small

1
200

multipole

1
400

I
200

multipole

power

power

1
200

multipole

h=200 Too large

S e
LR SR —
L FIN :‘__-
R R
3 -l'.'.\ls-..' :
R i
it o
A
r I 1
0 200 400
multipole

Image Source:
Larry’s book — All
of Nonparametric
Statistics

28



Kernel Regressmn as Weighted Least

o3 Geo-vY SRR Sauares

- w.ﬁ YV-

biLss min S wi(F(X) — ¥:)? wi(X) = e
i=1 " ) i=1 K (TQ
- } J
Weighted Least Squares tesh po

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=p (aconstant) FE F(}) FM
—— A A

°
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Kernel Regression as Weighted Least

Squares
set f(X)=P (a cqnstant)
. XXy o
L a_ w2 . K( A “
WS min Z wz(ﬁ Y;) w;(X) = X _X. <
b= - i=1 K (=7 Z)
constant \ o,
t
'J(F) F\.%)Z\' — é“)(\,l’
n ~ n
97 (5) = 2 Z wi(B—-Y;) =0 Notice that Z w; = 1
op i=1 1=1
= fn(X) = 3 = Z w; Y;
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Local Linear/Polynomial Regression

X
X—X;
mln Z tzz(f(X) Y;)? w;(X) = K( hX )X
i=1" '71,'1:1K( h Z)

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial
estimator obtained from (locally) weighted least squares

e set F(Xi) = fortB1 (X;—X)+ 22 (X, X) - +5p<x _x)?

———

(local polynomial of degree p around X)
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Summary

* Non-parametric approaches

Four things make a nonparametric/memory/instance
based/lazy learner:
1. Adistance metric, dist(x,X;) Dac-%i N\
Euclidean (and many more)
2. How many nearby neighbors/radius to look at?
k, A/h
3. A weighting function (optional)
W based on kernel K~/

4.  How to fit with the local points?
Average, Majority vote, Weighted average, Poly fit
— e _ —



Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
modeling assumptions

» Nonparametric models typically require storage and
computation of the order of entire data set size.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.



