

Non-parametric methods

Aarti Singh

Machine Learning 10-315
Feb 23, 2022

MACHINE LEARNING DEPARTMENT

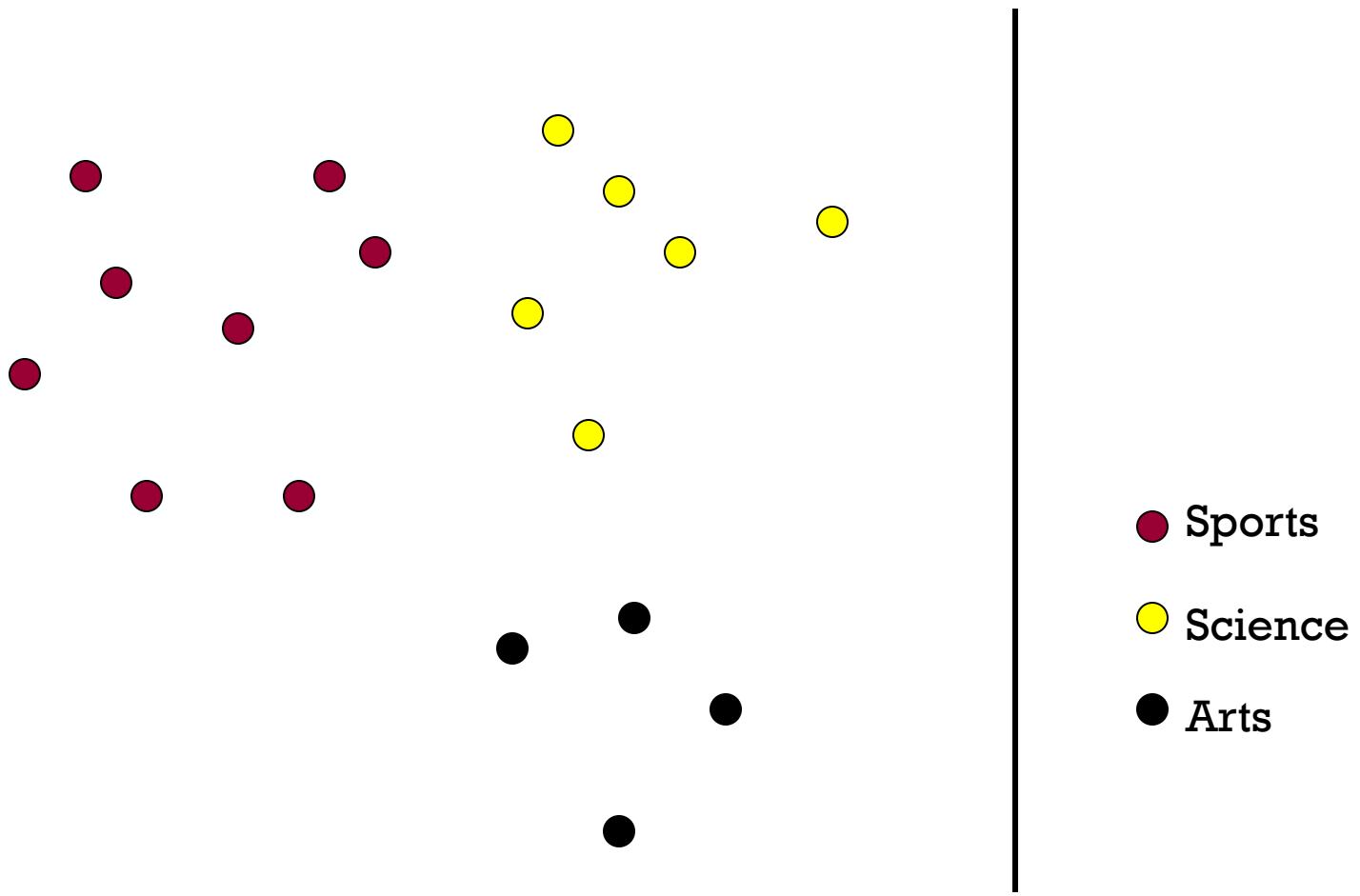
Parametric methods

- Assume some model (Gaussian, Bernoulli, Multinomial, logistic, network of logistic units, Linear, Quadratic) with fixed number of parameters
 - Gaussian Bayes, Naïve Bayes, Logistic Regression, Neural Networks
- Estimate parameters $(\mu, \sigma^2, \theta, w, \beta)$ using MLE/MAP and plug in
- **Pro** – need few data points to learn parameters
- **Con** – Strong modeling assumptions, not satisfied in practice

Non-Parametric methods

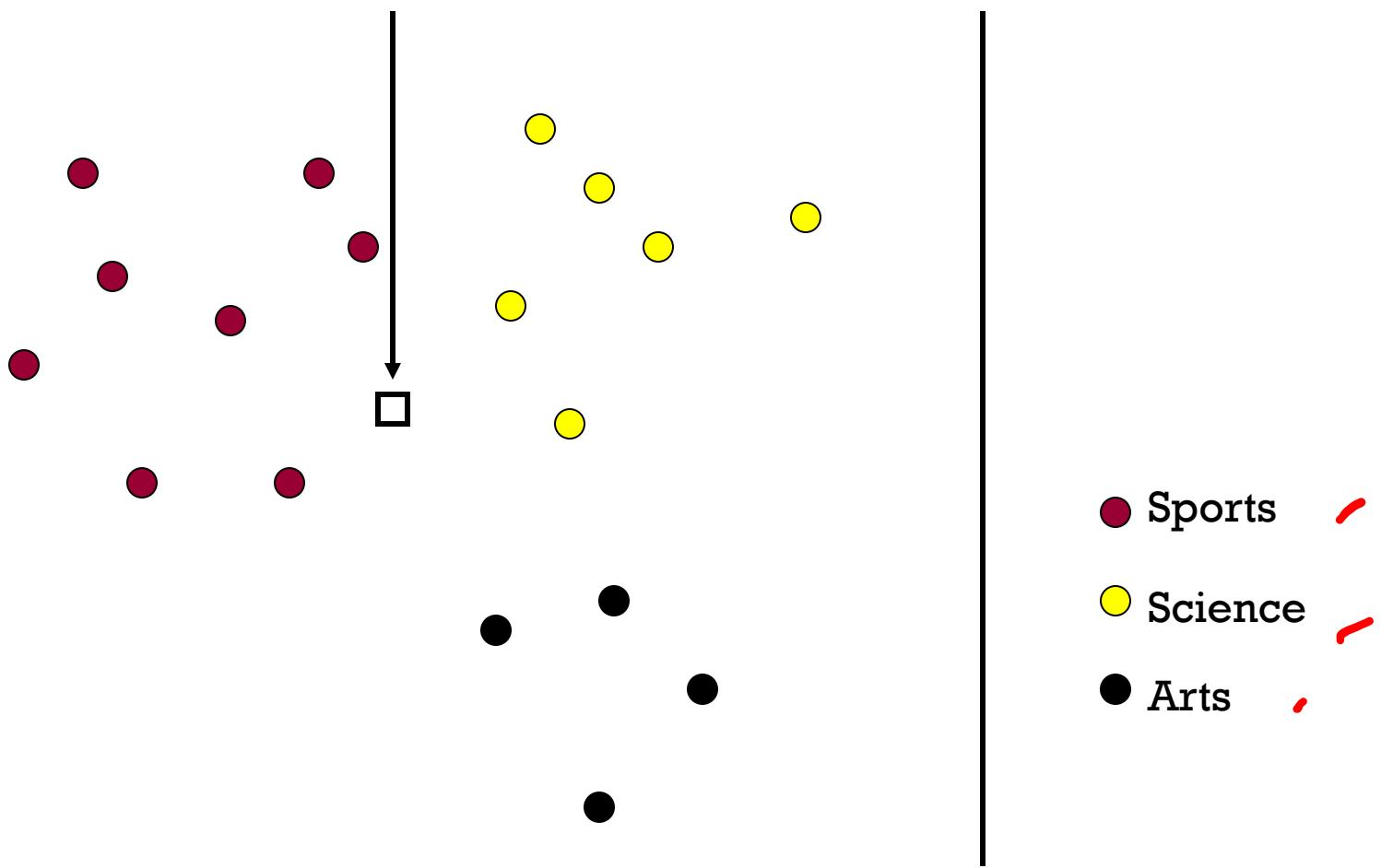
- Typically don't make any modeling assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data
- Some nonparametric methods
 - Classification:** Decision trees, k-NN (k-Nearest Neighbor) classifier
 - Density estimation:** k-NN, Histogram, Kernel density estimate
 - Regression:** Kernel regression

k-NN classifier

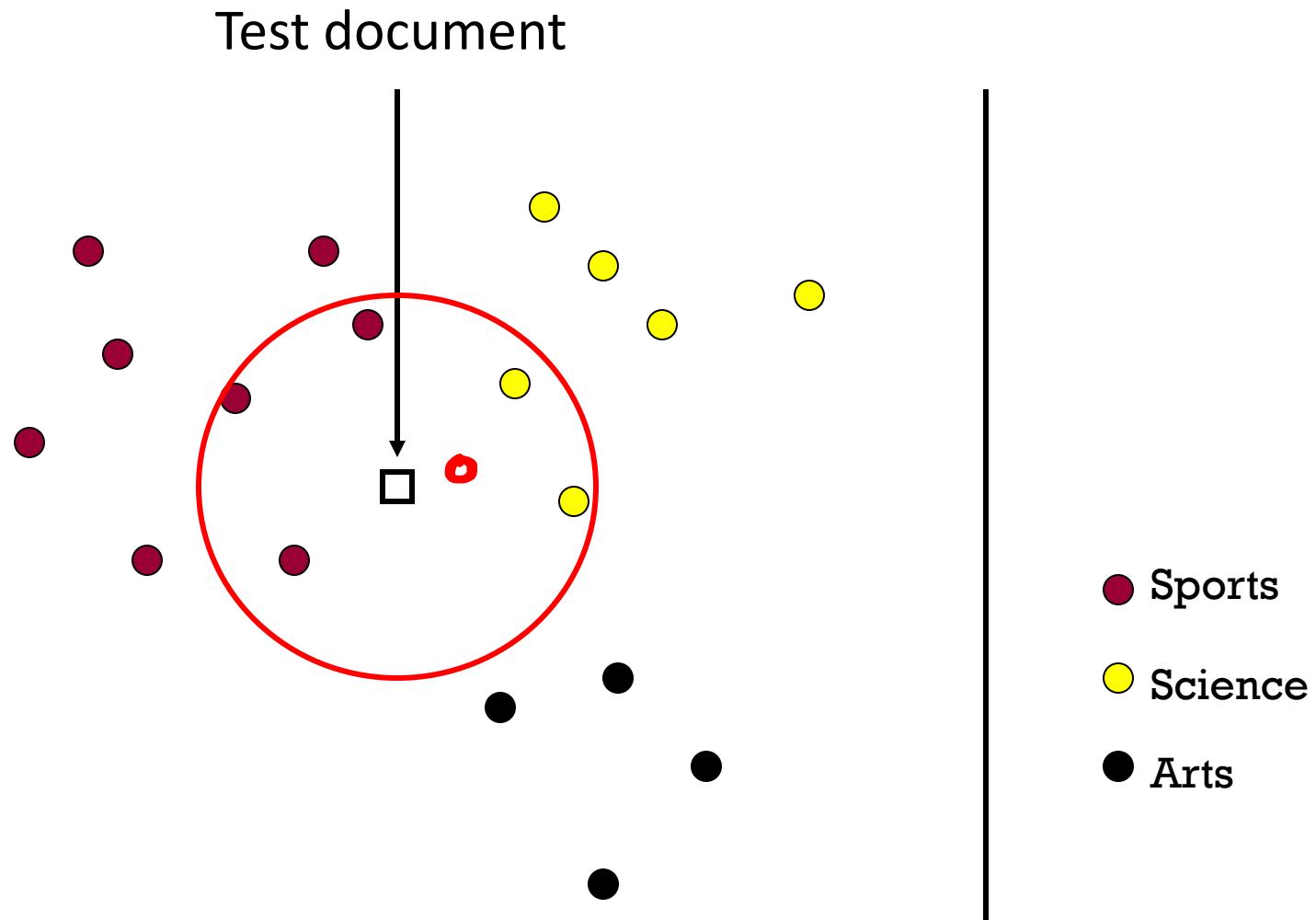


k-NN classifier

Test document



k-NN classifier (k=5)



What should we predict? ... Average? Majority? Why?

k-NN classifier

- Optimal Classifier:
$$\begin{aligned} f^*(x) &= \arg \max_y P(y|x) \\ &= \arg \max_y P(x|y) \underline{P(y)} \end{aligned}$$
- k-NN Classifier:
$$\begin{aligned} \hat{f}_{kNN}(x) &= \arg \max_y \underline{\hat{P}_{kNN}(x|y)} \underline{\hat{P}(y)} \\ &= \arg \max_y \frac{\sum_{y \text{ training}} k_y}{n_y} = \frac{n_y}{n} \end{aligned}$$

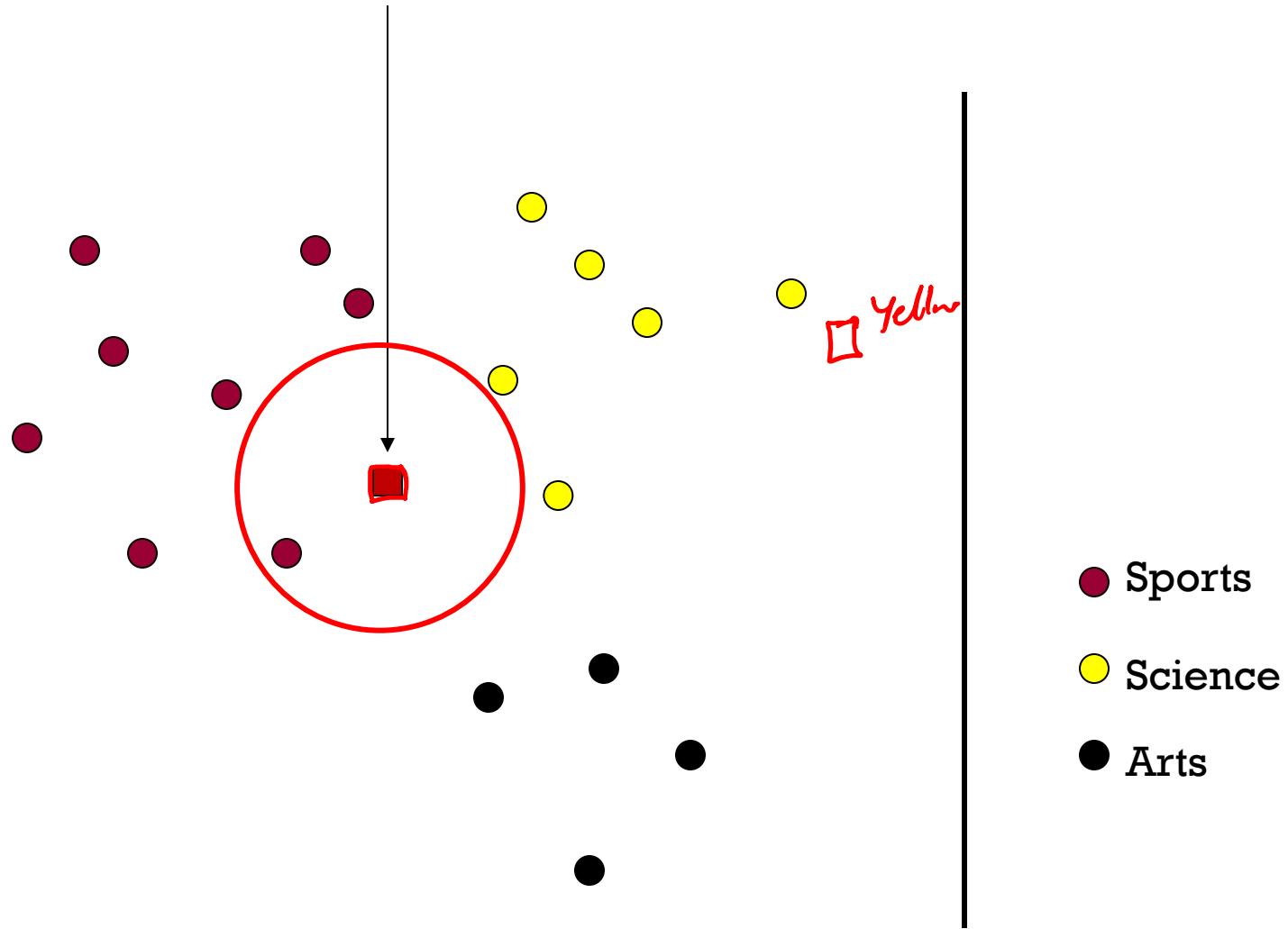
→ $\hat{P}_{kNN}(x|y) = \frac{k_y}{n_y}$

- # training pts of class y amongst k NNs of x
- # total training pts of class y

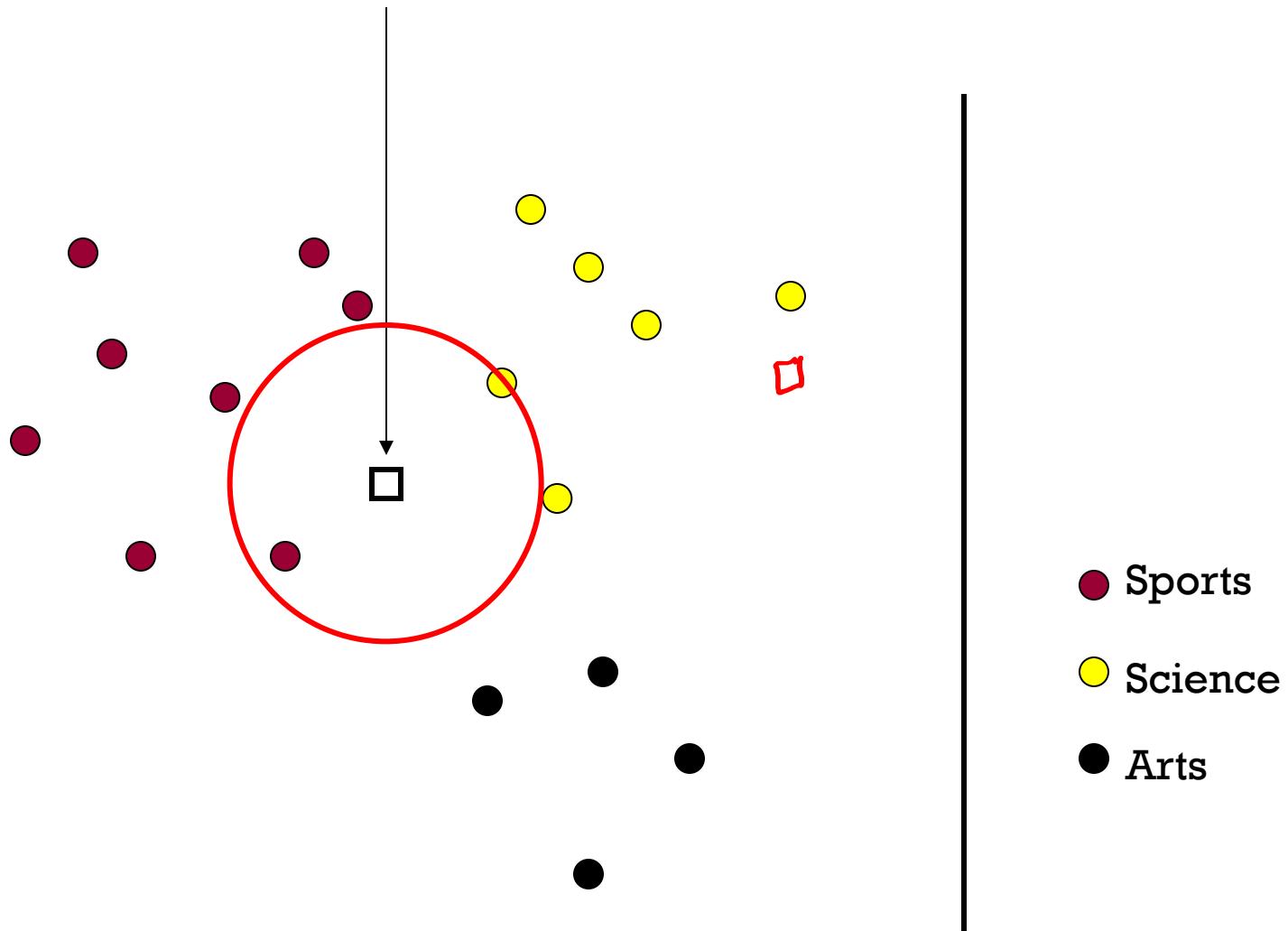
$$\sum_y k_y = k$$

$$\hat{P}(y) = \frac{n_y}{n}$$

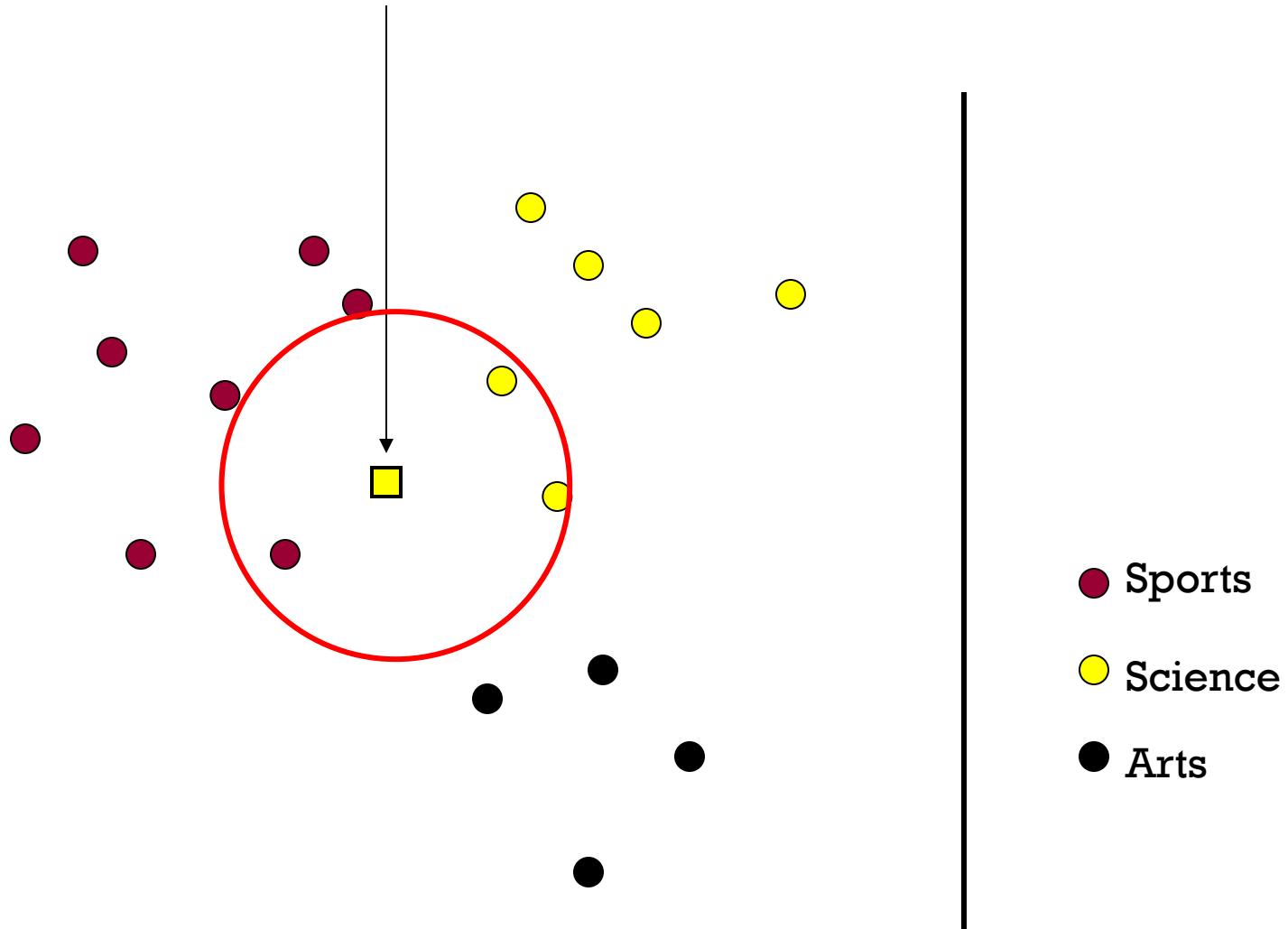
1-Nearest Neighbor (kNN) classifier



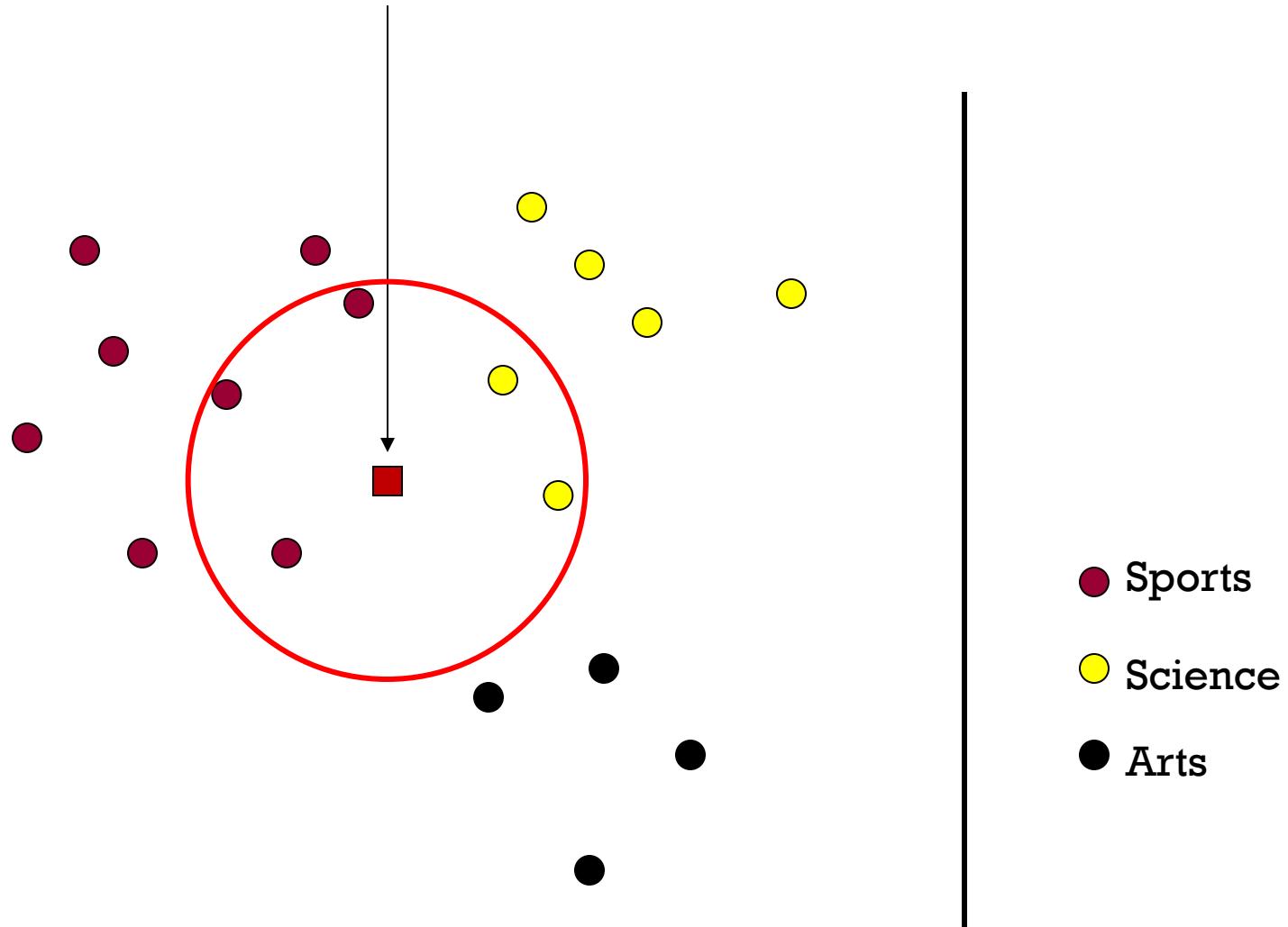
2-Nearest Neighbor (kNN) classifier



3-Nearest Neighbor (kNN) classifier

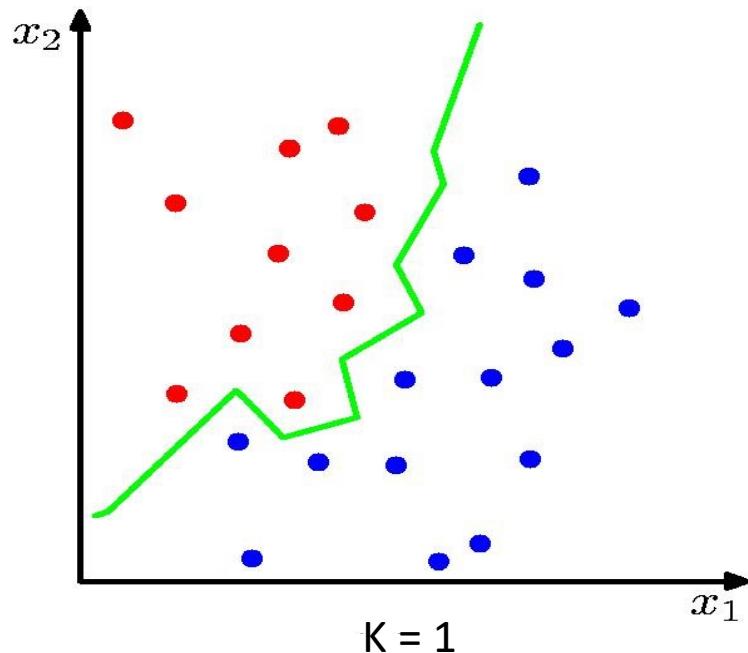


5-Nearest Neighbor (kNN) classifier

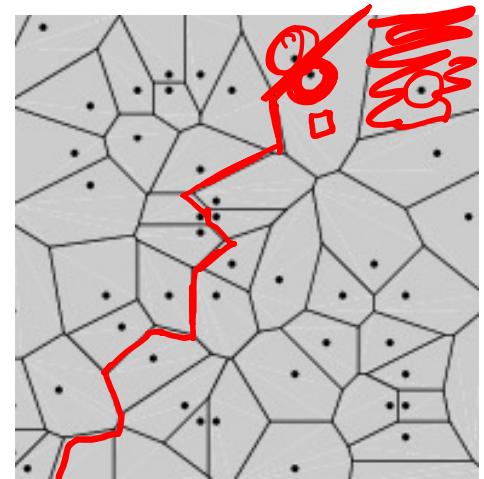


What is the best k?

1-NN classifier decision boundary



Voronoi
Diagram

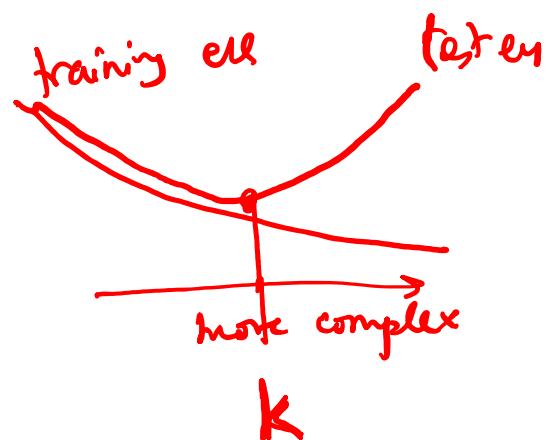


As k increases, boundary becomes smoother (less jagged).

What is the best k?

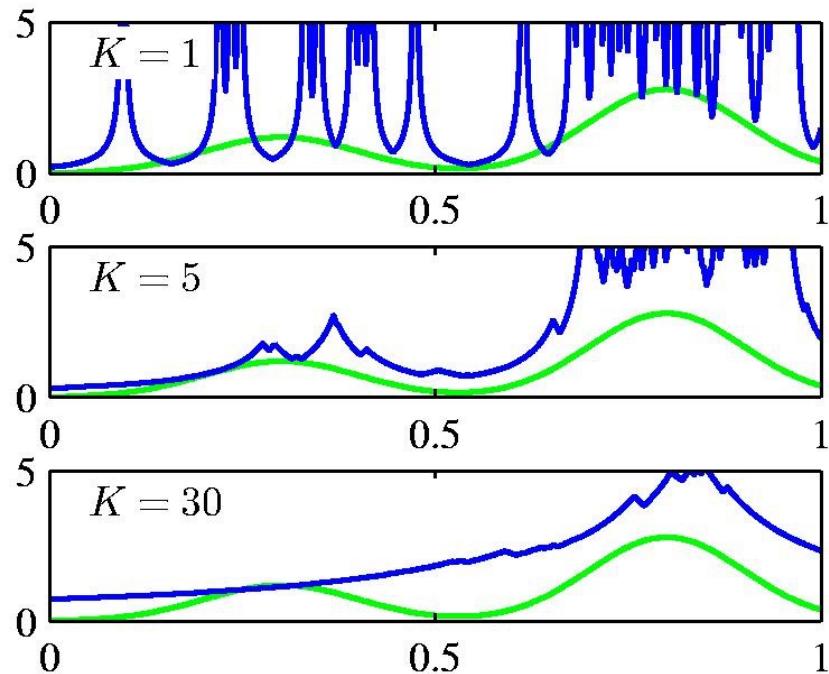
Approximation vs. Stability (aka Bias vs Variance) Tradeoff

- Larger K => predicted label is more stable
- Smaller K => predicted label can approximate best classifier well given enough data

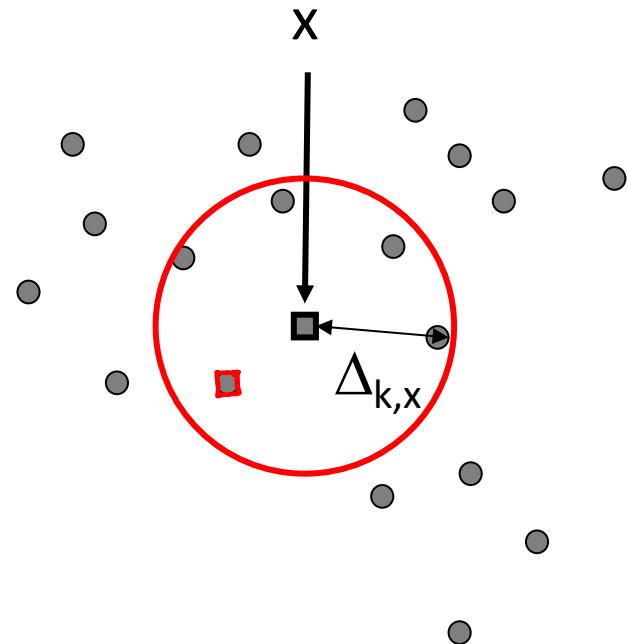


k-NN density estimation

$$\hat{p}(x) = \frac{k}{n\Delta_{k,x}}$$



k acts as a smoother.



Not very popular for density estimation – spiked estimates

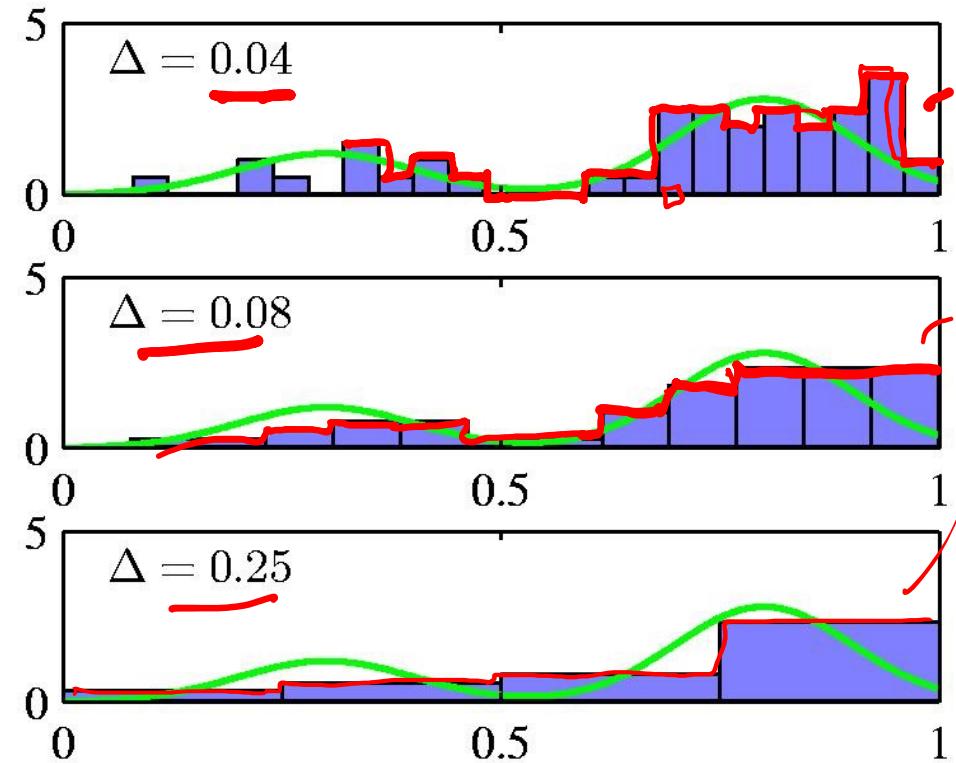
Histogram density estimate

Partition the feature space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$\hat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \text{Bin}_i}$$

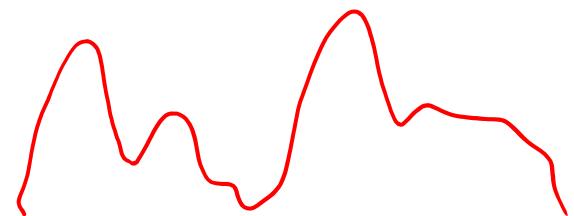
“Local relative frequency”

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.



Effect of histogram bin width

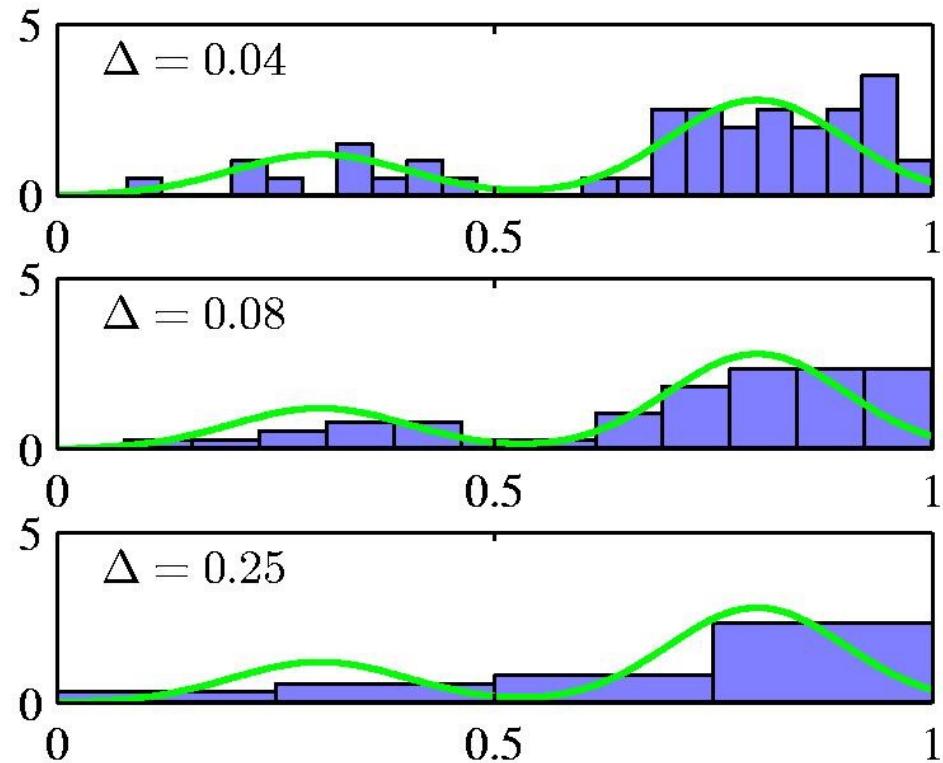
$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$



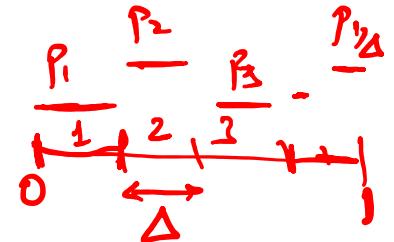
$$\# \text{ bins} = 1/\Delta$$

Small Δ , large #bins
Good fit but unstable
(few points per bin)
“Small bias, Large variance”

Large Δ , small #bins
Poor fit but stable
(many points per bin)
“Large bias, Small variance”



Histogram as MLE



- Underlying model – density is constant on each bin

Parameters p_j : density in bin j

Note $\sum_j p_j = 1/\Delta$ since $\int p(x)dx = 1$

$$\sum_j p_j \Delta = 1$$

- Maximize likelihood of data under probability model with parameters p_j

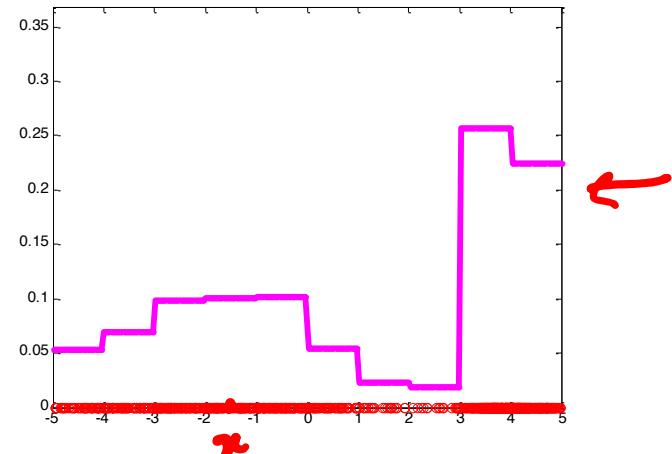
$$\hat{p}(x) = \arg \max_{\{p_j\}} P(\underbrace{X_1, \dots, X_n}_{\text{---}}, \underbrace{\{p_j\}_{j=1}^{1/\Delta}}_{\text{---}}) \quad \text{s.t.} \quad \sum_j p_j = 1/\Delta$$

- Show that histogram density estimate is MLE under this model = $\text{Categorical}(\underbrace{p_1 \Delta}_{\text{---}}, \underbrace{p_2 \Delta}_{\text{---}}, \underbrace{p_3 \Delta}_{\text{---}}, \dots)$

Kernel density estimate

- Histogram – blocky estimate

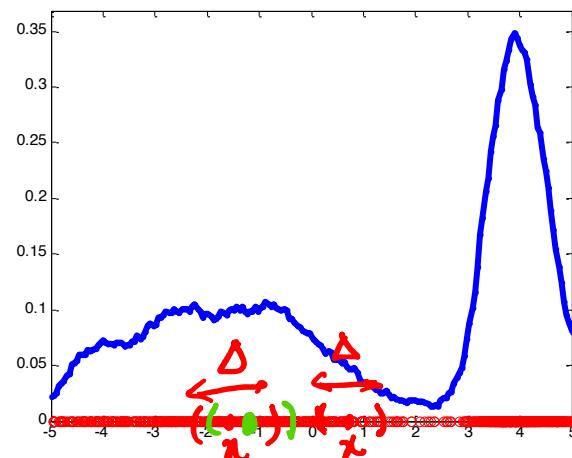
$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n \mathbf{1}_{X_j \in \text{Bin}_x}}{n} = \frac{n_x}{n\Delta}$$



- Kernel density estimate aka “Parzen/moving window method”

$\text{Kernel}(X_j, x, \Delta)$

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n \mathbf{1}_{||X_j - x|| \leq \Delta}}{n}$$



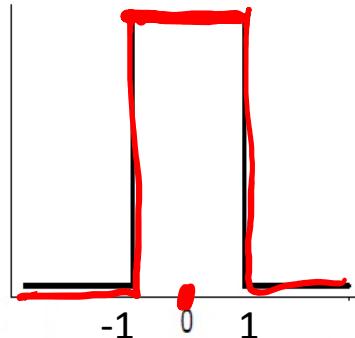
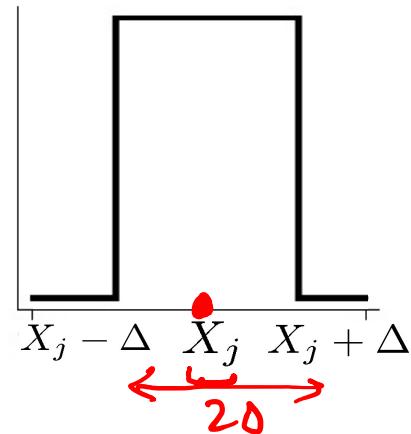
Kernel density estimate

- $$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n K\left(\frac{X_j - x}{\Delta}\right)}{n}$$
 $1 \leq j \leq n$
more generally

$$K\left(\frac{X_j - x}{\Delta}\right)$$

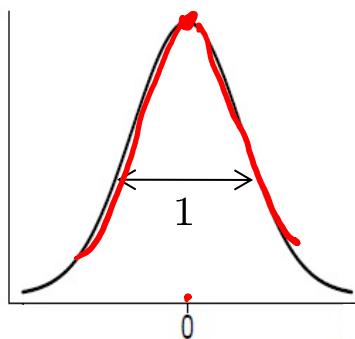
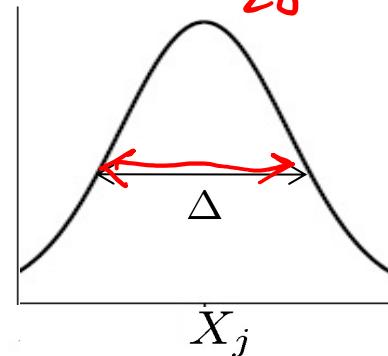
boxcar kernel :

$$K(x) = \frac{1}{2} I(x),$$



Gaussian kernel :

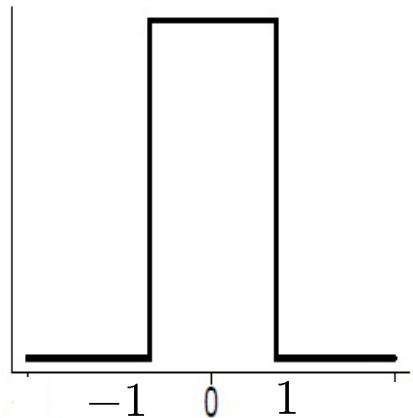
$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$



Kernels

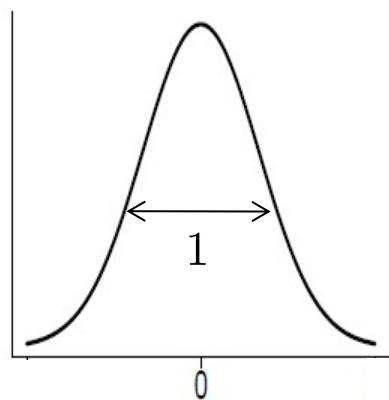
boxcar kernel :

$$\underline{K(x)} = \frac{1}{2}I(x),$$



Gaussian kernel :

$$\underline{K(x)} = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

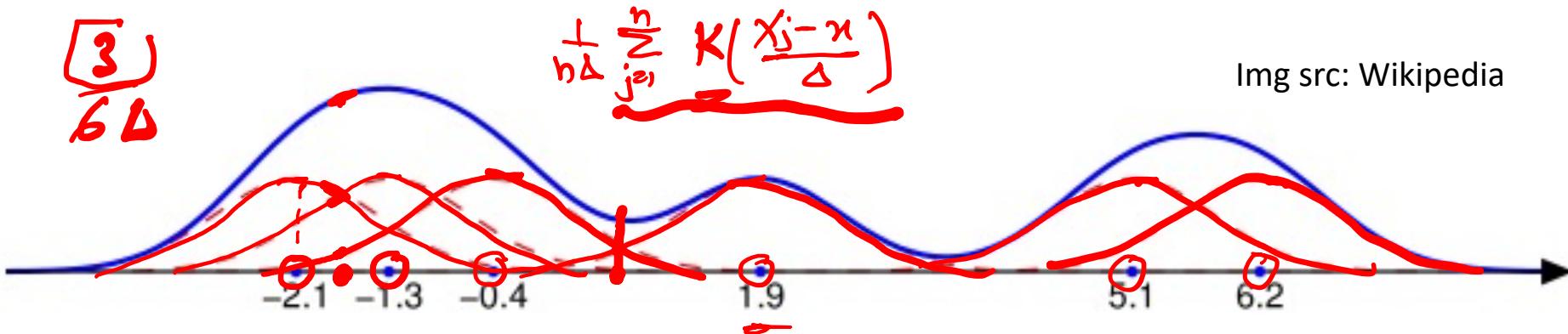


Any kernel function that satisfies

$$\begin{aligned} \rightarrow K(x) &\geq 0, \\ \rightarrow \int K(x)dx &= 1 \end{aligned}$$

Kernel density estimation

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".



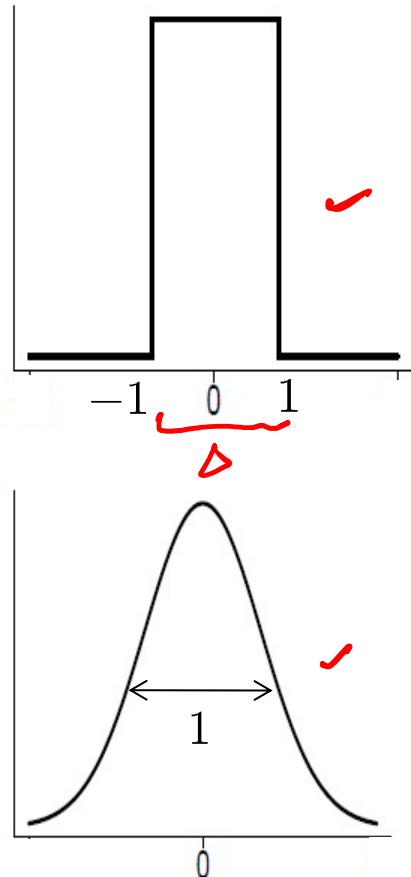
Gaussian bumps (red) around six data points and their sum (blue)

- Note that where the points are denser the density estimate will have higher values.

Choice of Kernels

boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



Finite support

- only need local points to compute estimate

Gaussian kernel :

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Infinite support

- need all points to compute estimate
- But quite popular since smoother

Choice of kernel bandwidth

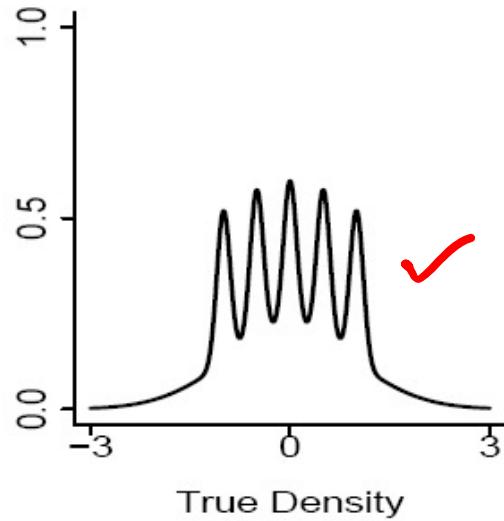
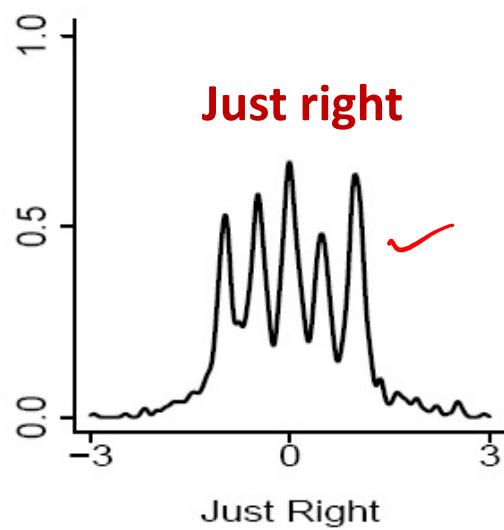
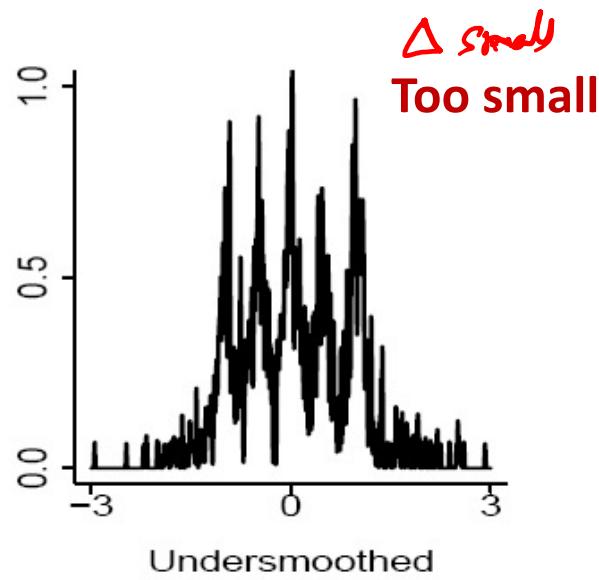
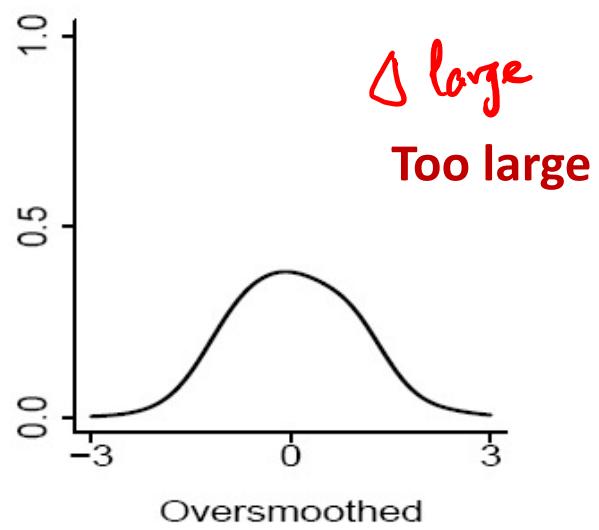
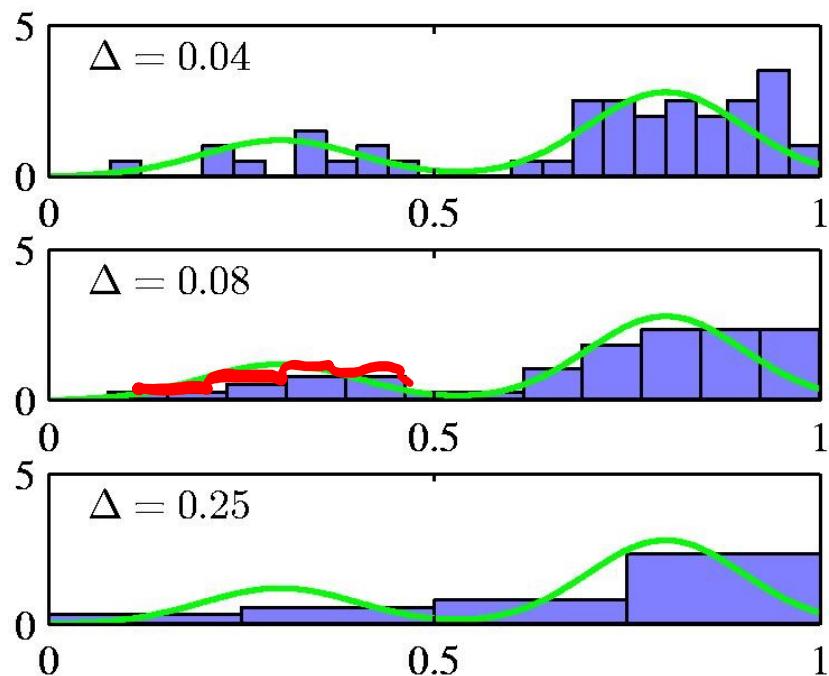
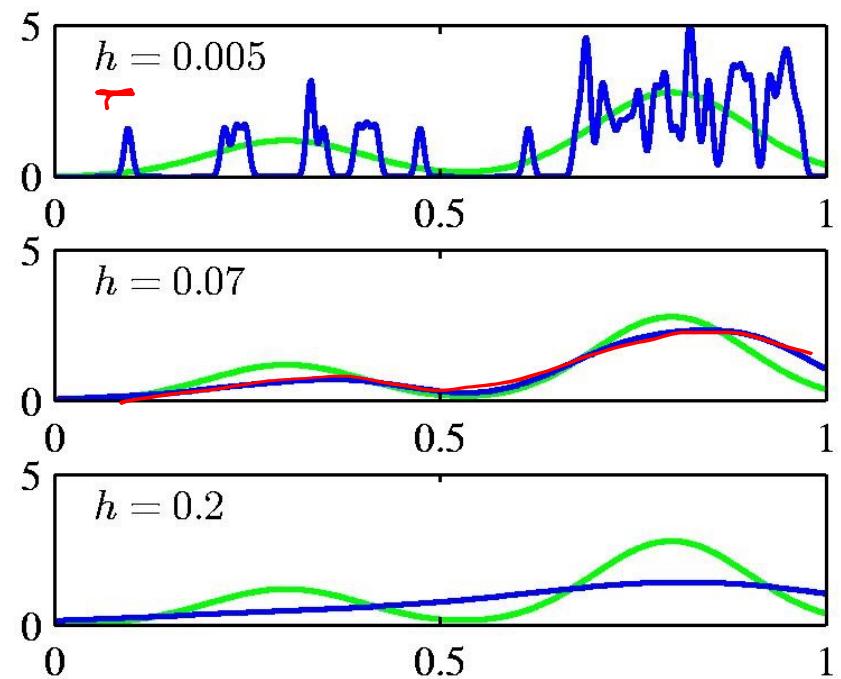


Image Source:
Larry's book – All
of Nonparametric
Statistics

Bart-Simpson
Density

Histograms vs. Kernel density estimation



$\Delta = h$ acts as a smoother.

Nonparametric density estimation

- Histogram

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

non-overlapping
bins

- Kernel density est

$$\hat{p}(x) = \frac{n_x}{n\Delta} \quad (\text{?})$$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

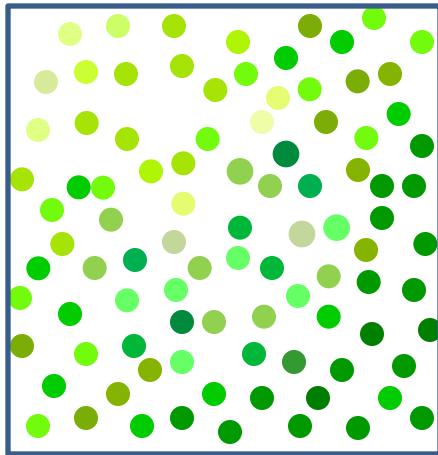
Fix $n_x = k$, estimate Δ from data (volume of ball around x that contains k training pts)

- k-NN density est

$$\hat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

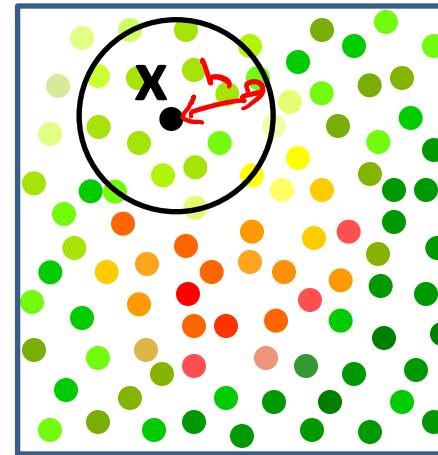
Local Kernel Regression

- What is the temperature in the room? at location x ?



$$\hat{T} = \frac{1}{n} \sum_{i=1}^n Y_i$$

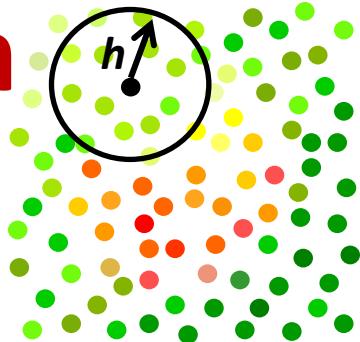
Average



$$\hat{T}(x) = \frac{\sum_{i=1}^n Y_i \mathbf{1}_{||X_i-x|| \leq h}}{\sum_{i=1}^n \mathbf{1}_{||X_i-x|| \leq h}}$$

"Local" Average ✓

Local Kernel Regression



- Nonparametric estimator
- Nadaraya-Watson Kernel Estimator

$$\hat{f}_n(X) = \sum_{i=1}^n w_i Y_i \quad \text{Where} \quad w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

- Weight each training point based on distance to test point
- Boxcar kernel yields local average

boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



Choice of kernel bandwidth h

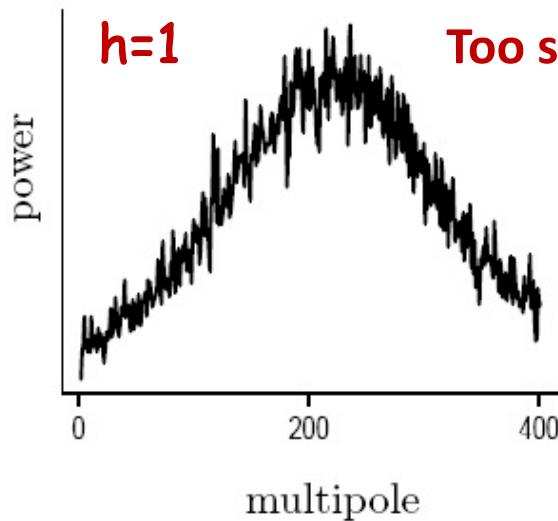
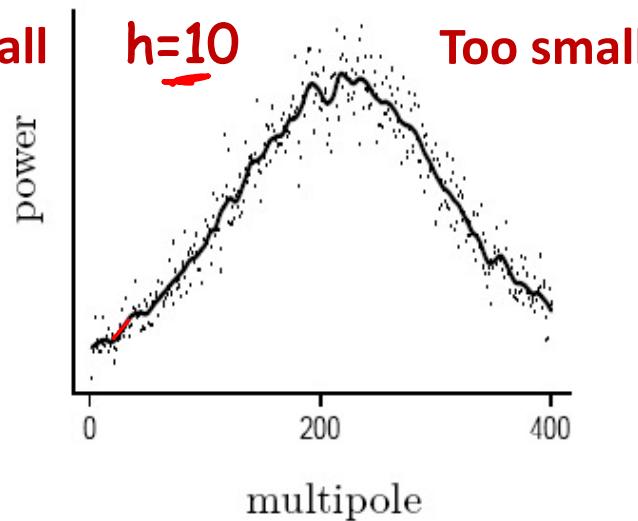
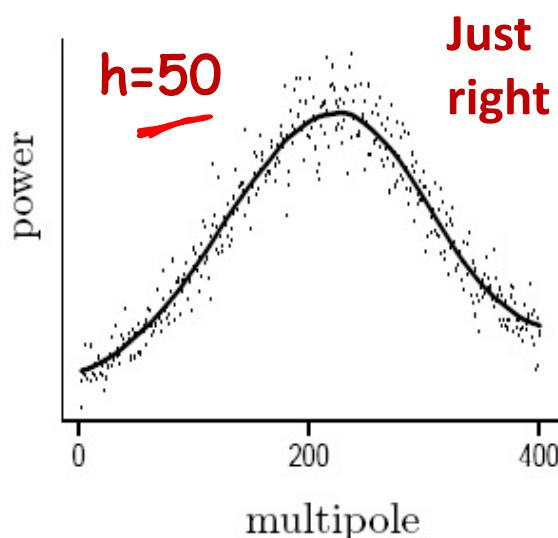
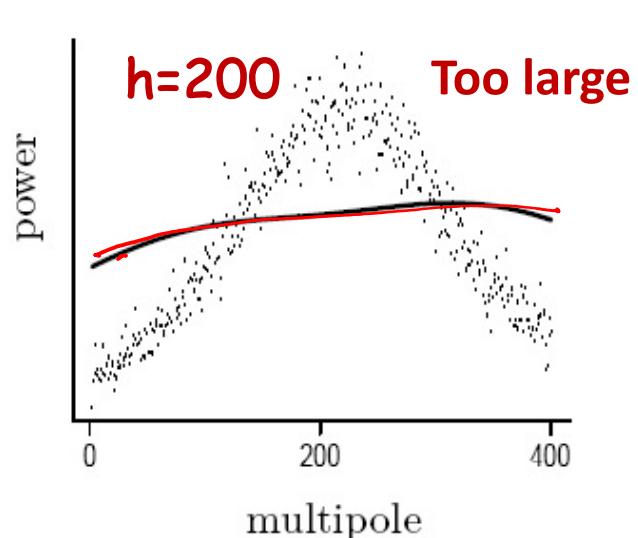


Image Source:
Larry's book – All
of Nonparametric
Statistics



Kernel Regression as Weighted Least

$$LS: \sum_{i=1}^n (f(x_i) - y_i)^2 \quad f(x_i) = \underline{x_i \beta} \quad \text{Squares}$$

$$WLS: \min_f \sum_{i=1}^n w_i (f(X_i) - Y_i)^2$$

Weighted Least Squares

trainig pt. $w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$

test point

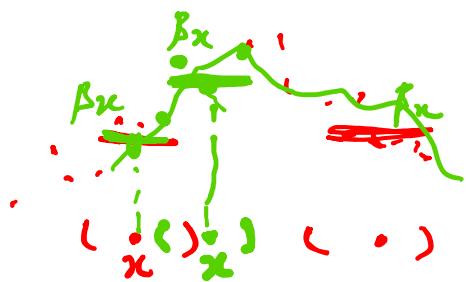
Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

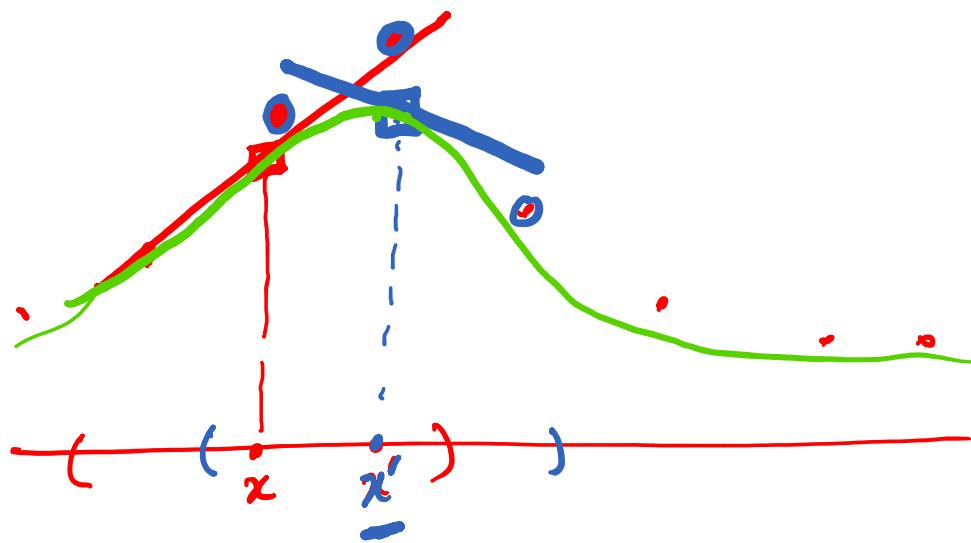
i.e. set $f(X_i) = \beta$ (a constant)

$$\beta = \beta(x)$$

$$\begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

$$f(x_i) = \underline{x_i \beta}$$





Kernel Regression as Weighted Least Squares

set $f(X_i) = \beta$ (a constant)

$$WLS: \min_{\beta} \sum_{i=1}^n w_i (\beta - Y_i)^2$$

β $f(x_i)$
"constant"
 $J(\beta)$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^n w_i (\beta - Y_i) = 0$$

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

$$\beta \sum_{i=1}^n w_i = \sum_{i=1}^n w_i Y_i$$

Notice that $\sum_{i=1}^n w_i = 1$

$$\Rightarrow \hat{f}_n(X) = \hat{\beta} = \sum_{i=1}^n w_i Y_i$$

Local Linear/Polynomial Regression

$$\min_f \sum_{i=1}^n w_i \underline{\underline{f(X_i)}} - \underline{\underline{Y_i}}^2$$

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

i.e. set $\underline{\underline{f(X_i)}} = \beta_0 + \beta_1(X_i - X) + \frac{\beta_2}{2!}(X_i - X)^2 + \dots + \frac{\beta_p}{p!}(X_i - X)^p$
(local polynomial of degree p around X)

Summary

- Non-parametric approaches

Four things make a nonparametric/memory/instance based/lazy learner:

1. A *distance metric*, $dist(x, X_i)$ ✓ $\|x - x_i\|$
Euclidean (and many more)
2. *How many nearby neighbors/radius to look at?*
 $k, \Delta/h$ ✓
3. *A weighting function (optional)*
W based on kernel K ✓
4. *How to fit with the local points?*
Average, Majority vote, Weighted average, Poly fit

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
 - Parametric models rely on very strong (simplistic) modeling assumptions
- Nonparametric models typically require storage and computation of the order of entire data set size.
- Parametric models, once fitted, are much more efficient in terms of storage and computation.