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Partitioning Algorithms

* K-means
— hard assignment: each object belongs to only one cluster

* Mixture modeling

— soft assignment: probability that an object belongs to a
cluster

Generative approach



Mixture models

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x|y=i) ~ N1, )

p(x) = IZ p(x[y=i) P(y=i)
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Mixture models

GMM — Gaussian Mixture Model (Multi-modal distribution)

e There are k components

e Component i has a probability of
getting picked p; = P(y=i)

e Each component generates data
from a Gaussian with mean z;and
covariance matrix 2;

Each data point is generated according
to the following recipe:

1) Pick a component at random:

Choose component i with
probability p; = P(y=i)

2) Datapoint x ~ N(x;, 2)



Mixture models (Gaussian)

k

T1,...,Tm ~ plx) = Zp(ﬂl; = Z)P(lj = 1)

Mixture Mixture
component proportion, p;

Gaussian mixture model

p(@|Y = i) ~ N (i, Xs)

Parameters: {p,,; s s, Zi }fil

 How to estimate parameters? Max Likelihood
But don’t know labels Y (recall Gaussian Bayes classifier)



Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels)

No need to choose step size as in Gradient methods.

* EMis an Iterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference
M-step: apply standard MLE/MAP method to estimate parameters

{pi, 1, Zi}ki=1

* Not guaranteed to converge to global optimum. BUT...

* This procedure monotonically improves the marginal likelihood of
observed data (or leaves it unchanged). Thus it always converges to
a local optimum of the likelihood.



EM for spherical, same variance GMMs
same mixture proportions

Initialize: u,, w,, ..., ug randomly

E-step
Compute “expected” classes of all datapoints for each class

In K-means "E-step”

: 2jP(y =i)  we do hard assignment

267

P(y:i‘xj,ul...uk)oc exp(— ij — U,

EM does soft assignment
M-step

Compute Makx. like p given our data’s class membership distributions (weights)

Ilterate.



EM for spherical, same variance GMMs
same mixture proportions
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P(y:i‘xj,ul...uk)oc exp(— ij — U,

EM does soft assignment
M-step

Compute Max. like p given our data’s class membership distributions (weights)

ZP(y = i‘xj)xj
= = Exactly same as MLE with
Plv=ix weighted data
JZ_; (y l‘xj)

H;

Ilterate.



EM for general GMMs

Iterate. On iteration t let our estimates be p? is shorthand for

[ f P(y=i) on
A={ut w® . w30 3 30 p.t) gt plt estimate o
e ={ 1Y, Uz Hi'™, «1', & k', P17, P2 p } t'th iteration

E-step
Compute “expected” classes of all datapoints for each class

Just evaluate a
Gaussian at X

(1) 5 (9)
Hs2, )

P(y = i‘xj,/lt)oc pl.(t)p(xj

M-step

Compute MLEs given our data’s class membership distributions (weights)
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M-step
Compute MLEs given our data’s class membership distributions (weights)
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lterate m — M= #data points




EM for general GMMs: Example

P(y =e| X, 11, M2, M3, 21,22,23,P1,P2,03)

o




After 15t iteration




After 2" jteration




After 3" jteration




After 4t" jteration




After 5" jteration




After 6t" iteration




After 20" jteration




GMM clustering of assay data




General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x) = IZ p(x[y=i) P(y=i)

v V

Mixture Mixture
component proportion

p(x[y=i) ~ N1, )




Resulting
Density
Estimator




Three
classes of
assay

(each learned with
it’s own mixture
model)




Resulting
Bayes
Classifier




Summary: EM Algorithm

A way of maximizing likelihood function for hidden variable models. Finds

MVLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

1. E-step: soft cluster assignment for each data point
2. M-step: update parameters of each mixture component

EM can get stuck in local minima.

BUT very popular in practice.



Clustering Algorithms

e Partition algorithms
* K means clustering

* Mixture-Model based clustering

* Hierarchical algorithms

e Single-linkage

* Average-linkage
e Complete-linkage
* Centroid-based
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Hierarchical Clustering

* Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:
— Joins the most similar pair of clusters,
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— Update the similarity of the new cluster to others ‘"c‘ '
until there is only one cluster. @
e ¥

Greedy - less accurate but simple to implement

* Top-Down divisive
Starts with all the data in a single cluster, and repeat: ‘ E
— Split each cluster into two using a partition algorithm L o KX
Until each object is a separate cluster.
More accurate but complex to implement l__l o
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Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence

updated) between two clusters

Single-Linkage

— Nearest Neighbor: similarity between
their closest members.

Complete-Linkage

— Furthest Neighbor: similarity between
their furthest members.

Centroid

— Similarity between the centers of gravity

Average-Linkage

— Average similarity of all cross-cluster pairs.
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Single-Linkage Method

Euclidean Distance
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Complete-Linkage Method

Euclidean Distance
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Dendrograms

Single-Linkage

ab cd

Complete-Linkage
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Single Link Example

Another Example

Complete Link Example
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Single vs. Complete Linkage

Single-linkage

Complete-linkage

Shape of clusters

allows anisotropic and
non-convex shapes

assumes isotopic, convex
shapes
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What you need to know...

e Partition based clustering algorithms
— K-means

* Coordinate descent

* Seeding

e Choosing K
Mixture models

EM algorithm

* Hierarchical clustering algorithms

Single-linkage
Complete-linkage
Centroid-linkage
Average-linkage
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