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• K-means 
– hard assignment: each object belongs to only one cluster

• Mixture modeling
– soft assignment: probability that an object belongs to a 

cluster

Generative approach
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Partitioning Algorithms



Mixture models

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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p(x|y=i) ~ N(µi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component



Mixture models

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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• There are k components

• Component i has a probability of 
getting picked pi = P(y=i)

• Each component generates data 
from a Gaussian with mean µi and 
covariance matrix Si

Each data point is generated according 
to the following recipe: 
1) Pick a component at random: 

Choose component i with 
probability pi = P(y=i)

2) Datapoint x ~ N(µi, Si)



Gaussian mixture model
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Parameters:

• How to estimate parameters? Max Likelihood
But don’t know labels Y (recall Gaussian Bayes classifier)

x1, . . . , xm ⇠ p(x) =
kX

i=1

p(x|Y = i)P (Y = i)

p(x|Y = i) ⇠ N (µi,⌃i)

{pi, µi,⌃i}Ki=1

Mixture models (Gaussian)



Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in 
the context of unsupervised learning (hidden labels)

• No need to choose step size as in Gradient methods.

• EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference
M-step: apply standard MLE/MAP method to estimate parameters

{pi, μi, Σi}ki=1

• Not guaranteed to converge to global optimum. BUT…
• This procedure monotonically improves the marginal likelihood of 

observed data (or leaves it unchanged). Thus it always converges to 
a local optimum of the likelihood.

k



EM for spherical, same variance GMMs
same mixture proportions

Initialize: µ1, µ2, …, µK randomly

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like μ given our data’s class membership distributions (weights)

( ) ( )iyPx
2
1exp...,xiyP

2
ij2k1j =÷
ø
ö

ç
è
æ µ-

s
-µµµ=

In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.
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In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.

Exactly same as MLE with 
weighted data



EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a 
Gaussian at xj

Iterate.  On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }        

pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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EM for general GMMs
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Iterate.



EM for general GMMs: Example
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P(y =  |xj,µ1,µ2,µ3,S1,S2,S3,p1,p2,p3)



After 1st iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



GMM clustering of assay data



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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Resulting 
Density 

Estimator



Three 
classes of 

assay
(each learned with 

it’s own mixture 
model)



Resulting 
Bayes

Classifier



Summary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds 
MLE of parameters when the original (hard) problem can be broken up 
into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data and current 

parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

1. E-step:          soft cluster assignment for each data point
2. M-step: update parameters of each mixture component

• EM can get stuck in local minima.

• BUT very popular in practice.
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Clustering Algorithms

• Partition algorithms
• K means clustering
• Mixture-Model based clustering

• Hierarchical algorithms
• Single-linkage
• Average-linkage
• Complete-linkage
• Centroid-based
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Hierarchical Clustering

• Bottom-Up Agglomerative Clustering
Starts with each object in a separate cluster, and repeat:
– Joins the most similar pair of clusters, 
– Update the similarity of the new cluster to others
until there is only one cluster.

Greedy – less accurate but simple to implement

• Top-Down divisive 
Starts with all the data in a single cluster, and repeat:
– Split each cluster into two using a partition algorithm
Until each object is a separate cluster.

More accurate but complex to implement
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Bottom-up Agglomerative clustering
Different algorithms differ in how the similarities are defined (and hence 
updated) between two clusters

• Single-Linkage 
– Nearest Neighbor: similarity between

their closest members.

• Complete-Linkage 
– Furthest Neighbor: similarity between

their furthest members.

• Centroid
– Similarity between the centers of gravity

• Average-Linkage
– Average similarity of all cross-cluster pairs.
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Another Example



Single vs. Complete Linkage

32

Shape of clusters

Single-linkage allows anisotropic and 
non-convex shapes

Complete-linkage assumes isotopic, convex         
shapes



What you need to know…
• Partition based clustering algorithms

– K-means
• Coordinate descent
• Seeding
• Choosing K

– Mixture models
EM algorithm 

• Hierarchical clustering algorithms
– Single-linkage
– Complete-linkage
– Centroid-linkage
– Average-linkage
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