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Convolutional Neural Networks

Compared to standard feedforward neural networks with similarly-sized layers,
= CNNs have much fewer connections and shared parameters
= and so they are easier to train,

= while their performance is likely to be only slightly worse, particularly
for images as inputs.
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Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning

Applied to Document Recognition, Proceedings of the IEEE,
86(11).2278-2324, November 1998



Convolution operator
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2-Dimensional Convolution filter
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2-Dimensional Convolution filter
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2-Dimensional Convolution filter
f[X,Y]*g[X,y] = Z 2 f[npnz]'g[x_nlay_nz]

nl = —Cc0 }‘12 = —00

https://graphics.stanford.edu/courses/cs178/applets/convolution.html

Filter (=kernel)
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Poll: which filter goes with which output image?

Input K1 K2 K3
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Poll: which filter goes with which output image?

Input K1 K2 K3




Convolutional Neural Networks

[Convolution filter + Nonlinear activation] + Pooling

= sigmoid
- tanh

Without zero padding? ’

-1.0t

LeNet — tanh activation

et —e &

f(x) = tanh(x) =

e.’IZ‘ _I_ e—SL’




Convolutional Neural Networks

[Convolution filter + Nonlinear activation] + Pooling

Tanh activation Pooling
Convolution
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Pooling = Down-sampling

Reduce size to reduce number of parameters

.251.25

.251.25

Average pooling: convolution with stride = filter size
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Convolutional Neural Networks

Lenet5 — Lecun, et al, 1998

i 2
= Convnets for digit recognition C5 convolution or FC:

Input layer: 32x32 C1: 6x28x28 S2: 6x14x14  C3: 16x10x10 S4: 16xSXS C5: 120 F6: 84 Output: 10

¥

| convolution layer | sussampling layer | convolution layer | subsampling layer | fully connected network |
feature extraction | classification
LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998
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LeNet 5, LeCun 1998

Input layer: 32x32 C1: 6x28x28 S2: 6x14x14 C3: 16x10xI0 S4: 16x5xS CS: 120 Fo: 84

“WTT:Zghﬁ

Output: 1.0

3088060606006

| convolution layer l subsampling layer | convolution layer | subsampling layer fully connected network |

feature extraction | classification

= Input: 32x32 pixel image. Largest character is 20x20
(All important info should be in the center of the receptive fields of the
highest level feature detectors)

= Cx: Convolutional layer (C1, C3, C5) tanh nonlinear units
= Sx: Subsample layer (52, 54) average pooling
= Fx: Fully connected layer (F6) logistic/sigmoid units

= Black and White pixel values are normalized:
E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std of pixels ?31)
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LeNet 5 In Action
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LeNet 5, Shift invariance
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LeNet 5, Rotation invariance
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LeNet 5, Noise resistance
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ImageNet Classification with Deep

Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,

Advances in Neural Information Processing Systems 2012

Alex Net
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The Architecture

el _ o=
el + =7

f@)=0+e*)"  (logistic function)
Here, Rectified Linear Units (ReLU) are used: f(z) = max(0,z)

Typical nonlinearities: f(z) = tanh(z) =

Non-saturating/Gradients don’t vanish — faster training

Sigmoid

1.2

-0.2 -15 -2
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The Architecture

Training error rate

Typical nonlinearities:

f(x) = tanh(x) =

fx)=Q+e @)1

et —e &

eLU _I_ e—ﬂi‘

(logistic function)

Here, Rectified Linear Units (ReLU) are used: f(z) = max(0,z)

Non-saturating/Gradients don’t vanish — faster training

0.75+

0.54

0254

A four-layer convolutional neural
network with ReLUs (solid line)
reaches a 25% training error rate on
CIFAR-10 six times faster than an
equivalent network with tanh neurons

(dashed line)
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The Architecture
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The Architecture

48 e 192 192 128 2048 \/ 2048 \dense
5 C190 T a2 i
15 13 13
. Pecsesnnd A 3 -'"""'.'.':2' :
- 57 B T ' 13 dense | |dense
--------- 1000
192 192 128 Max - -
Max 128 Max pooling 2048 2048
pooling pooling
a8

5 convolution layers (RelLU)

3 overlapping max pooling — nonlinear downsampling (max value of
regions)

2 fully connected layers

output softmax
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Trained with stochastic gradient descent
on two NVIDIA GTX 580 3GB GPUs

for about a week

650,000 neurons
60,000,000 parameters
630,000,000 connections

5 convolutional layer with Rectified Linear Units (ReLUs), 3
overlapping max pooling, 2 fully connected layer

Final feature layer: 4096-dimensional

Prevent overfitting — data augmentation, dropout trick

Randomly extracted 224x224 patches for more data
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Preventing overfitting

1) Data augmentation: The easiest and most common method to
reduce overfitting on image data is to artificially enlarge the dataset
using label-preserving transformations:

= image translation
= horizontal reflections

= changing RGB intensities

2) Dropout: set the output of each hidden neuron to zero w.p. 0.5.

= So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

= This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

= forced to learn more robust features that are useful in conjunction witr

many different random subsets of the other neurons. -



ImageNet

O 15M images

Q 22K categories

d Images collected from Web

d Human labelers (Amazon’s Mechanical Turk crowd-sourcing)

O ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images

o 150,000 testing images

O RGB images

[ Variable-resolution, but this architecture scales them to 256x256 size

28



ImageNet

Classification goals:
d Make 1 guess about the label (Top-1 error)

d make 5 guesses about the label (Top-5 error)
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Results

container s motor scooter

mite container ship motor scooter leapard
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cockroach amphibian moped [:'_‘ cheetah
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» -+ "
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fire engine || dead-man’'s-fingers currant howler monkey
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Results Image S|m|Iar|ty

/ six training images that produce feature vectors in
Test column the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image. 31
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Feature Engineering

Convolutional Neural Networks

[Statistics provided by ILSVRC]
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Tips and tricks for preventing overfitting

> Dropout

> Data augmentation

> Early stopping: stop training when validation set error
increases (with some look ahead).

© Training Validazion

nurnbzr of zpodhs

> Neural Architecture search: tune number of layers and

neurons per layer using grid search or clever optimization
33



Other optimization tips and tricks

> Initialization: cannot initialize to same value, all units in a
hidden layer will behave same; randomly initialize to small value

» Momentum: use exponentially weighted sum of previous

radients .
g _(1) f‘_]) 0' We|ghts

=t
Vo' = Vol(f(x"),y")) + BV of Network

can get pass plateaus more quickly, by “gaining momentum”

> Adaptive learning rates: one learning rate per weight

e.g. RMSProp uses exponentially weighted average of squared gradients

_ 2 _ Vol(f(x®), y(®)
1 = B0+ (1 - B) (Vall(x®),y®)) 757 = T LVT)

VY + €

Adam combines RMSProp with momentum 34



Tips and Tricks for training deep NNs

« First hypothesis (underfitting): better optimize

> |Increase the capacity of the neural network

> Check initialization

> Check gradients (saturating units and vanishing gradients)

> Tune learning rate

- Second hypothesis (overfitting): use better regularization
> Dropout

> Data augmentation

> Early stopping

> Architecture search

- For many large-scale practical problems, you will need to use
both: better optimization and better regularization! 35





