Boosting

Can we make dumb learners smart?

Aarti Singh

Machine Learning 10-315
Mar 2, 2022

Slides Courtesy: Carlos Guestrin, Freund & Schapire

ACHI

Why boost weak learners?

Goal: Classify movie review sentiment

“I'm a fan of TV movies in general and this was one of the good
ones”

“Long, boring. Never have | been so glad to see ending credits
roll”

“I don’t know why | like this movie, but | never get tired.”

* Easy to find “rules of thumb” that are better than random
chance.

E.g. If ‘good’ occurs in utterance, then predict ‘positive’

* Hard to find single highly accurate prediction rule.
e.g. “This movie is terrible but it has some good effects” 2

Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners e.g., naive Bayes, logistic
regression, decision stumps (or shallow decision trees)

Are good © - don’t usually overfit
Are bad ® - can’t solve hard learning problems

 Can we make weak learners good??? 3

Voting (Ensemble Methods)

* Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

* Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

H: X = Y (-1,1)

h1(X) S h2(X)
- = h1(X)+h2(X)

H(X) = S|gn(Zat ht(X))

Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

But how do you ???
— force classifiers h, to learn about different parts of the input
space?
— weigh the votes of different classifiers? o,

Boosting [Schapire’89]

Idea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

On each iteration t:

— weight D,(i) for each training example i, based on how
incorrectly it was classified

— Learn a weak hypothesis — h,
— A weight for this hypothesis —

Final classifier: | H(X) = sign(Z ot ht(X))

Practically useful
Theoretically interesting

Learning from weighted data

* Consider a weighted dataset
— D(i) — weight of i th training example (x\y')
— Interpretations:

 jth training example counts as D(i) examples

* If | were to “resample” data, | would get more samples of “heavier”
data points

* Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

— e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)
Count(Y=y) = 5 1(Y '=y) Count(Y=y) = 5 D(i)1(Y i=y)
i =1 i =1

7

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

Train weak learner using distribution D;. Naive bayes, decision stump
Get weak classifier hy : X — R.
Update:

Dyyq(i) = Dy (1) { e if y; = hy(x;)

et if y; & hi(x;)

: Increase weight
_ Di(i) exp(—anyibu(s) 0o T

Zt yiht(xi)=-1<0

where Z; is a normalization factor

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

Train weak learner using distribution D;. Naive bayes, decision stump

Get weak classifier hy : X — R.
Update:

Dy(7) exp(—ay;hi(z;))

Diyq(i) = Z

where Z; is a normalization factor

Zo= 3" Ds(i) exp(—asyshe()
1=1

Increase weight
if wrong on pt i
yiht(xi) =-1<0

Weights for all

pts must sumto 1
z Dt+1(i) =1
t

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier hy : X — R.
e Choose a; € R. Magic (+ve)
e Update: . Increase weight
Diis (Z) - Dt(z) exp(_atyz'ht(xi)) if wrong on pti
Z yi ht(xi) =-1< 0

where Z; is a normalization factor

Output the final classifier:

g
H(z) = sign (Z atht(a:)) :

=1

What «, to choose for hypothesis A,?

Weight Update Rule: Dyy1(3) = Dy(7) exp(gatyiht(xi))
t

o = %]n (1 _ et) [Freund & Schapire’95]

Weighted training error
et = Pyup,iy[he(x") # '] = Z Di()6(he(@i) # yi)

Does ht get it" point wrong

= 0 if h, perfectly classifies all weighted data pts o =
g = 1if hy perfectly wrong => -h, perfectly right oy = -
=0.5 o = 0

Boosting Example (Decision Stumps)

[)2

12

Boosting Example (Decision Stumps)

+ +
47 + 4
I+ — 3+ T -
+ - + -
D
DR R -
+| - + © g
i — + 7
- ©

» What's the error on the weighted training dat%, €57

Boosting Example (Decision Stumps)

[)2

Boosting Example (Decision Stumps)

=

H_
final

= \1gn<4|

15

Analysis for Boosting

* Choice of &, and hypothesis /4, obtained by coordinate descent on exp
loss (convex upper bound on 0/1 loss)

0/1 loss

exp loss

fl@) =) athe(a); H(z) = sign(f())
t

> 6(H() £) < Y exp(—yif (2)
=1

1
m,—1

0/1 loss exp loss

16

Analysis for Boosting

Analysis reveals:

* If each weak learner A, is slightly better than random guessing (g,< 0.5),

then training error of AdaBoost decays exponentially fast in number of
rounds T.

m

T
> 8(H(m;) #y;) < exp (—2 > (12— Et)2>
=1

1
m;=1

Training Error

What about test error?

17

Boosting results — Digit recognition

[Schapire, 1989]

Test Error

Training Error |
10 100 1000
rounds

* Boosting often,
— Robust to overfitting
— Test set error decreases even after training error is zero

* |f classes are well-separated, subsequent weak learners agree and hence more
rounds does not necessarily imply that final classifier is getting more complex.

18

AdaBoost and AdaBoost.MH on Train (left) and Test (r1ght) data from Irvine repository. [Schapire and Singer, ML 1999]

16 -,
14 - l1
12- %)
10 3 |
8- il

oM = o

g Train

100

30

25 7

20

1000

20
e 1est
15
10 -
5 o
¥ M'“‘\:’(:.w"’m\w 0
100 1000
25
hepatits =
| ,,w/ 3
',.y*. & 10 -
\ 4‘1\:‘# LN ‘}‘m 5
Ly
s R
100 1000
cleve 16
14 - :
/’ 12
09\' 10
« ",.)/ 8
:N‘/ o
vt
—~— 14"7"*‘ 2 N
0 %
100 1000 |
e o

oy

1 o Train
3
L
l’-'
1‘
l A
'r""‘. I|
R
k}v s
10 100
sonal
5
4
1
1
. L,
W
10 100
nnsphere
10 100

0 ‘ pre TeSt
.IA:-_
1k
I['.“
15- iy
|1 v,
|0 - " s "'w‘: 0 I!!t:l z
1000 1 10 100 1000
N o sonar
8-
% - Vv
A4 -
2
el v
L8 Bl
Il Wit
1000 | 10 100 1000
18 - ,
onosp here
16 -
14 - II', ;'4|
v\
12 -
10 'L\H‘
A
8 .
. ; ot "’"4""1!0*‘ m
1000 | 10 100 1000

Boosting can overfit if classes not well separated (high label noise) or weak

learners are too complex.

19

Boosting and Logistic Regression

Logistic regression assumes:

1
P(Y = 11X) = f($)=wo+zwgﬂ?j
(X) 1 + exp(f(z)) j
And tries to maximize data likelihood:
id ™ 1
P(D|If)=]]

Equivalent to minimizing log loss

—log P(D|f) = i IN(1 + exp(—y;f(z;)))
i=1

20

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

> In(L + exp(—yif (@) Fa) = wo+ 3 e,

i=1
Boosting minimizes similar loss function!!

= 3" exp(-uif (2) f(@) =3 arhy(a)
i=1 ¢

Weighted average of weak learners

exp loss Both smooth and convex

approximations of 0/1 loss!
0/1 loss

0 f(z;) 3

Boosting and Logistic Regression

Logistic regression:

Minimize log loss

S In(1 + exp(—yif(z))

i=1
Define

f(x) = Z W;T
J

where x; predefined
features

(linear classifier)

Jointly optimize over all
weights wo, wi, wa...

Boosting:
* Minimize exp loss

> exp(—yif(x;))
i=1
e Define

f(z) =) athi(z)
t

where /,(x) defined dynamically

to fit data
(not a linear classifier)

* Weights o, learned per iteration

t incrementally
22

Hard & Soft Decision

Weighted average of weak leamers f(z) = > azhi(x)
t

Hard Decision/Predicted label: H(x) = sign(f(x))

Soft Decision: P(Y =1|X) = 1
(based on analogy with 1+ exp(f(x))
logistic regression)

23

File Tools Desktop Tree Window Help ~
B & &M
~ S NS
a . R a
Matlab example Click to display: | |dentiy *| magnification: | 100% + | Pruning level: [0 of8 =
d e o X5 < 0.23154 LA%5 >=0.23154
— decision tree
< 0.02313 X5 5= 0.02313 X27 < 0. 999927 >= 0.999945
X3 ¢0.14081 Y\X34€ & J0TBIB1 AxT0 o= -0.74981 X1 SUSAX] >=0.5
g/X16 <-0.90517 JAX16 >= 0.90517 8 < 0.93671 A7 >=0.93671
load ionosphere . x3< 04369 A3 >=0.43693
0,
% UCI dataset X3 < 0369335 (KX84 Q. FIBBE5S Y\X24 >= -0.987455 X8 ¢f0.70588 Y\XB >=0.7§

% 34 features, 351 samples

g X12<-0.117495 %\X12 >= -0.117435

% binary classification
rng(100)

X9 < 0277955 /X9 >=0.27795y

X12 <40.12187 f\Xx12 >= -0.12187

%Default MinLeafSize = 1
tc = fitctree(X,Y);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph’)

Validation error = 0.1254

kfoldLoss(cvmodel) ”

Matlab example
- decision tree

load ionosphere

% UCI dataset

% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize = 1

File Tools Desktop Tree Window Help ~
L RS gn}.
R N n -
Click to display: | Identiy + | mMagnification: | 100% + | Pruning level: |0 of7 -
X5 < 0.145975 AAX5 >=0.145375
X27 < 0.999214\27 >= 0.99921
X8 <-0.53701 L8 S=-0.53701 X1 <USAX >=0.5

X14 < 0.26643 /29

4 >=0.26643

X5 < 041807523%5 >=0.418075

X34 < 0.95098 %4334 >= 0.95098

X4 < 0.61343 (x4 >=0.61343y

X4 < -0.077075 fXX4 >=-0.07707y

X17 < 0.199705 ZLX17 >= 0.1397034

tc = fitctree(X,Y, 'MinLeafSize’,2);

cvmodel = crossval(tc);

view(cvmodel.Trained{1},'Mode','graph’)

kfoldLoss(cvmodel)

X4 <¢0.080395 j\x4 >=-0.080335

g X3 <0.73004 2\X3 >=0.73004

§ X22 < 0.47714 %22 >= 0477

X6 < -0.727275 JAX6 >=-0.7§ 275

Validation error = 0.1168

25

File Tools Desktop Tree Window Help ¥

+)

'*‘ﬂ‘)

~ N ."". !

M at I a b exa m p I e Click to display: | |dentity y Magnification: | 100% y Pruning level: |0 of4

“»

— decision tree

load ionosphere

% UCI dataset

% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize =1
tc = fitctree(X,Y, 'MinLeafSize',10);
cvmodel = crossval(tc);

view(cvmodel.Trained{1},'Mode','graph’)

kfoldLoss(cvmodel)

X5 <0.04144 AAX5>=0.04144

X27 >= 0.993945

X22 < 047714 A\X22 >= 047714

X3 < 04404

X24 <-0.00251 X3 < 0698435 /£x3 >=0.698435

Validation error = 0.1339

26

Matlab example — decision trees

4 \ fixed # training data
\Q
0.1339
: 0.1254
Validation error
Training error
= -
underfitting . overfitting Complexity
Model

MinLeafSize 10

MinLeafSize 2

MinLeafSize 1

27

Matlab example - boosting

% UCI dataset

% 34 features, 351 samples
% binary classification

load ionosphere;

rng(2); % For reproducibility

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
rsLoss = resublLoss(ClassTreeEns,'Mode','Cumulative');
plot(rsLoss,'r");

hold on

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree’,...
'‘Holdout',0.5);

genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');

plot(genError,'b');

xlabel('Number of Learning Cycles');

legend('Training err', 'Test err')

Matlab example - boostin

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Number of Learning Cycles

Teaining er
__1 -
- Validation error ~ 0.07 .
0 1I0 2IO SIO 4I0 5IO 6I0 7IO 8IO 9I0

100

Bagging [Breiman, 19906]

Related approach to combining classifiers:

1. Run independent weak learners on subsampled data (sample with
replacement) from the training set

2. Average/vote over weak hypotheses

Bagging VS. Boosting
Resamples data points Reweights data points (modifies their
distribution)
Weight of each classifier Weight is dependent on
is the same classifier’s accuracy
Only variance reduction Both bias and variance reduced —

learning rule becomes more complex
with iterations 30

Boosting Summary

Combine weak classifiers to obtain strong classifier
— Weak classifier — slightly better than random on training data

— Resulting very strong classifier — can eventually provide zero training
error

AdaBoost algorithm
Boosting v. Logistic Regression

— Similar loss functions

— Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:

— Boosted decision stumps!

— Very simple to implement, very effective classifier

31

