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Maximal

Margin Linear
Separators
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- The margin of a linear separator is the distance between it

and the nearest training data point

* Questions:

1. How can we efficiently find a maximal-margin linear
separator?

2. Why are linear separators with larger margins better?

3. What can we do if the data is not linearly separable?



* For linear models, decision boundaries are D-dimensional

hyperplanes defined by a weight vector, [b, w]
wix+b=0

* Problem: there are infinitely many weight vectors that
Hyperplanes describe the same hyperplane
° X1+ 2x, + 2 = 0is the same line as

2x1 + 4x, + 4 = 0, which is the same line as
1000000x; + 2000000x, + 2000000 =0

* Solution: normalize weight vectors w.r.t. the training data
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Normalizing

Hyperplanes
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. ) ~~ N
* Given a dataset D = {(x(l),y(l))}i=1 wherey € {—1, +1},
9 = sign(w'x + b) is a valid linear separator if
yO(WTx® +b) > 0v (x®,y®) € D
* For SVMs, we’re going to consider linear separators in the set

(o — cion(uT | - @) (T +(0) _
H {y sign(w x+b).(x(i),rﬁ%geﬂ y O (wlxW + b) 1}

- If § = sign(w!x + b) is a linear separator, then
T
y = sign (%x + %) € H where

_ : (D) (yarT (D)
= min w'x\" +b
p=omn_, ¥y )



Normalizing

Hyperplanes:
Example
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Computing the

Margin
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- Claim: w is orthogonal to the hyperplane wix + b = 0

(the decision boundary)

* A vector is orthogonal to a hyperplane if it is orthogonal to

every vector in that hyperplane

» Vectors a and B are orthogonal if a’ B = 0

* Proof:

- Let x" and x” be two arbitrary pointsonw x +b =0

x' —x”isavectoronwlx+b =0

T

wix+b=0->wx=-b

wlilx' —=x)=wix'—wix’"=-b+b=0 nm



- Claim: w is orthogonal to the hyperplane w'x + b = 0

(the decision boundary)

* A vector is orthogonal to a hyperplane if it is orthogonal to

every vector in that hyperplane

Computing the * Vectors a and 8 are orthogonal if a’ B = 0

Margin
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- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x' onto

Iwll2’

Computlng the the unit vector orthogonal to the hyperplane

Margin
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- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x’ onto T
2

Computlng the the unit vector orthogonal to the hyperplane
Margin w X

lwll, ,'4—\\

\

wix+b=0
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- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x' onto

Iwll2’

CompUtmg the the unit vector orthogonal to the hyperplane

Margin
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Computing the

Margin

Henry Chai - 3/21/22

- Let x' be an arbitrary point on the hyperplane

h(x) = wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and h(x) = wlx + b = 0 is equal

to the magnitude of the projection of x” — x’ onto T
2

the unit vector orthogonal to the hyperplane

A ) wix”—x)| |wix”—wlx'|
X = =
' wl] wl]
lwlx” + b

Iwll2
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Computing the

Margin
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* The margin of a linear separator is the distance between it and

the nearest training data point

- wlx® + b
(i) rn(})n d(x(‘), h) T “%“ | |
(x®,yD)eD (x0y®)ep  |lwll;

1
e (x® ym) €D
1 .
~ Twll; (x0y®) e
1

Iwll2

|w x@D 4 b|

yO(wxW + b)
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1

Iwll2

subjectto  min  y@(wlx® +b) =1
(xD,y®) e D

maximize

minimize ||w]||,

subjectto  min  yO(wlx® +p) =1
(x(l),y(l)) eD

Maximizing the

: 1
Margin minimize > [|wl|3

subjectto  min  yO(wlx® +p) =1
(x(l),y(l)) eD
()
1

minimize E w

subject to y(i) (wa(i) + b) >1V (x(i),y(i)) €D

Tw
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Maximizing the

Margin
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1
minimize E w

subject to y(i) (wa(i) + b) =1V (x(i), y(i)) €D

Tw

° If [B, W] is the optimal solution, then 3 at least one training
data point (x®,y®) € DstyO(wTxW + b) = 1
* All training data points (x(i),y(i)) € D where
y(i) (WTx(i) + B) = 1 are known as support vectors
* Converting the non-linear constraint (involving the min) to

N linear constraints means we can use quadratic

programming (QP) to solve this problem in O(D?) time
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* Define a model and model parameters

* Assume a linear decision boundary (with

normalized weights)
h(x) =wix+b=0

* Parameters: w = [wy, ..., wp|] and b

* Write down an objective function (with constraints)

1

minimize 5 wl

w

subject to y(i) (WTx(i) + b) >1V (x(i), y(i)) €D

- Optimize the objective w.r.t. the model parameters

- Solve using quadratic programming

17



* Consider three binary data points in a bounded 2-D space

* Let H = {all linear separators} and

H,= {all linear separators with minimum margin p}

Why Maximal T4 T/ B
Margins? + + n _
- +/ - |4 -
\
— — — +
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* Consider three binary data points in a bounded 2-D space

- H = {all linear separators} can always correctly classify any

three (non-colinear) data points in this space

Why Maximal T4 T/ B
Margins? + + n _
- +/ - |4 -
\
— — — +
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* Consider three binary data points in a bounded 2-D space

* H,, = {all linear separators with minimum margin p} cannot

always correctly classify three non-colinear data points

Why Maximal T A - J—
p I
+”#

Margins?

+ + -
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* The margin of a linear separator is the distance between it

and the nearest training data point

* Questions:

1. How can we efficiently find a maximal-margin linear
Summary separator? By solving a constrained quadratic
Thus Far optimization problem using quadratic programming

2. Why are linear separators with larger margins

better? They’re simpler *waves hands*

3. What can we do if the data is not linearly

separable? Next!

21
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- What can we do if the data is not linearly separable?

1. Accept some non-zero training error

Linearl
Y * How much training error should we tolerate?

Inseparable
Data 2. Apply a non-linear transformation that shifts the

data into a space where it is linearly separable

* How can we pick a non-linear transformation?
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1
minimize E w

subject to y(i) (wa(i) + b) =1V (x(i), y(i)) €D

Tw

* When D is not linearly separable, there are no feasible

solutions to this optimization problem
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Hard-margin

SVMs
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1
minimize E w

subject to y(i) (wa(i) + b) =1V (x(i), y(i)) €D

Tw

* When D is not linearly separable, there are no feasible

solutions to this optimization problem

24



Soft-margin

SVMs
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1
minimize =w'w + C z 130,

2
subject to y@ (w x(‘) + b) >1-¢Dy (x(‘),y(‘)) €ED
£ >0 vie{l,.., N}
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1
minimize > wiw + C z g)

subject to y(‘)(w x(l) + b) >1-¢Dy (x(‘),y(‘)) €ED

£ >0 vie{l,.., N}
- £@ s the “soft” error on the it" training data point

1fEW > 1, then y O (wTx® + ) <0 =

Soft-margin

SVMs

(x(i), y(i)) is incorrectly classified
10 < ED < 1, thenyO(wTx® +b) >0 =

(x(i),y(i)) is correctly classified but inside the margin
N

. Z St(l) is the “soft” training error
i=1
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Soft-margin

SVMs
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1
minimize =w'w + C z 130,

2
subject to y@ (w x(‘) + b) >1-¢Dy (x(‘),y(‘)) €ED
£ >0 vie{l,.., N}

- Still solvable using quadratic programming

* All training data points (x(i),y(i)) € D where

yO(W'xW + b) < 1 are known as support vectors
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Interpreting ¢ (0)
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Interpreting ¢ (0)

Henry Chai - 3/21/22

29



Interpreting ¢ (0)
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Interpreting ¢ (0)
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Interpreting ¢ (0)
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Interpreting ¢ (0)

Henry Chai - 3/21/22

33



Henry Chai - 3/21/22

Smaller C

Setting C

Larger C Hard Margin

C is a tradeoff parameter (much like
the tradeoff parameter in

regularization)
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