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Maximal 
Margin Linear 
Separators

� The margin of a linear separator is the distance between it 
and the nearest training data point

� Questions:
1. How can we efficiently find a maximal-margin linear 

separator?

2. Why are linear separators with larger margins better?

3. What can we do if the data is not linearly separable?
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Hyperplanes

� For linear models, decision boundaries are !-dimensional 
hyperplanes defined by a weight vector, ",$

$!% + " = 0

� Problem: there are infinitely many weight vectors that 
describe the same hyperplane

� )" + 2)# + 2 = 0 is the same line as 
2)" + 4)# + 4 = 0, which is the same line as 
1000000)" + 2000000)# + 2000000 = 0

� Solution: normalize weight vectors w.r.t. the training data
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Normalizing 
Hyperplanes

� Given a dataset - = % $ , . $
$%"
&

where . ∈ −1,+1 ,      

1. = sign $!% + " is a valid linear separator if 

. $ $!% $ + " > 0 ∀ % $ , . $ ∈ -

� For SVMs, we’re going to consider linear separators in the set

ℋ = 1. = sign $!% + " : min
' ! ,) ! ∈+

. $ $!% $ + " = 1

� If 1. = sign $!% + " is a linear separator, then 

1. = sign
,"
- % +

.
- ∈ ℋ where 

; = min
' ! ,) ! ∈+

. $ $!% $ + "
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! "! ""
-0.2 -0.6 1 ∉ ℋ
-0.4 -1.2 2 ∉ ℋ
-2 -6 10 ∉ ℋ
-10 -30 50 ∈ ℋ
0.2 -0.6 0.2 ∉ ℋ
0.1 -0.3 0.1 ∉ ℋ
1 -3 1 ∉ ℋ
2 -6 2 ∈ ℋ

Normalizing 
Hyperplanes: 
Example
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Computing the 
Margin

� Claim: $ is orthogonal to the hyperplane $!% + " = 0

(the decision boundary)

� A vector is orthogonal to a hyperplane if it is orthogonal to 
every vector in that hyperplane

� Vectors < and = are orthogonal if <!= = 0

� Proof:

� Let %′ and %” be two arbitrary points on $!% + " = 0

� %′ − %” is a vector on $!% + " = 0

� $!% + " = 0 → $!% = −"

� $! %′ − %” = $!%′ − $!%” = −" + " = 0 ∎

8Henry Chai - 3/21/22
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%”

$

$!% + " = 0
%′



Computing the 
Margin

� Let %′ be an arbitrary point on the hyperplane            
$!% + " = 0 and let %” be an arbitrary point

� The distance between %” and $!% + " = 0 is equal to 

the magnitude of the projection of %” − %′ onto ,
, #

, 

the unit vector orthogonal to the hyperplane
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Computing the 
Margin
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� Let %′ be an arbitrary point on the hyperplane               
ℎ % = $!% + " = 0 and let %” be an arbitrary point

� The distance between %” and ℎ % = $!% + " = 0 is equal 

to the magnitude of the projection of %” − %′ onto ,
, $

,    

the unit vector orthogonal to the hyperplane

C %”, ℎ =
$! %” − %0

$ #
=

$!%” − $!%′
$ #

C %”, ℎ =
$!%” + "

$ #



Computing the 
Margin

� The margin of a linear separator is the distance between it and 
the nearest training data point

min
' ! ,) ! ∈+

C % $ , ℎ = min
' ! ,) ! ∈+

$!% $ + "
$ #

min
' ! ,) ! ∈+

C % $ , D =
1

$ #
min

' ! ,) ! ∈+
$!% $ + "

min
' ! ,) ! ∈+

C % $ , D =
1

$ #
min

' ! ,) ! ∈+
. $ $!% $ + "

min
' ! ,) ! ∈+

C % $ , D =
1

$ #
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subject to . $ $!% $ + " ≥ 1 ∀ % $ , . $ ∈ -

minimize
1

2
$!$

Maximizing the 
Margin
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subject to min
' ! ,) ! ∈+

. $ $!% $ + " = 1

maximize
1

$ #

⇕

subject to min
' ! ,) ! ∈+

. $ $!% $ + " = 1

minimize $ #

⇕
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subject to min
' ! ,) ! ∈+

. $ $!% $ + " = 1

minimize
1

2
$ ##

⇕



� If Q", R$ is the optimal solution, then ∃ at least one training 

data point % $ , . $ ∈ - s.t . $ R$!% $ + Q" = 1

� All training data points % $ , . $ ∈ - where 

. $ R$!% $ + Q" = 1 are known as support vectors

� Converting the non-linear constraint (involving the min) to 
T linear constraints means we can use quadratic 
programming (QP) to solve this problem in U !1 time

Maximizing the 
Margin
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subject to . $ $!% $ + " ≥ 1 ∀ % $ , . $ ∈ -

minimize
1

2
$!$



� Define a model and model parameters

� Assume a linear decision boundary (with 
normalized weights)

ℎ % = $!% + " = 0

� Parameters: $ = V", … , V2 and "

� Write down an objective function (with constraints)

� Optimize the objective w.r.t. the model parameters
� Solve using quadratic programming

Recipe 
for 
SVMs
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subject to . $ $!% $ + " ≥ 1 ∀ % $ , . $ ∈ -

minimize
1

2
$!$



Why Maximal 
Margins?
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� Consider three binary data points in a bounded 2-D space

� Let ℋ = {all linear separators} and                                     
ℋ-= {all linear separators with minimum margin ;} 



Why Maximal 
Margins?
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� Consider three binary data points in a bounded 2-D space

�ℋ = {all linear separators} can always correctly classify any 
three (non-colinear) data points in this space 



Why Maximal 
Margins?
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;

� Consider three binary data points in a bounded 2-D space

�ℋ- = {all linear separators with minimum margin ;} cannot 
always correctly classify three non-colinear data points



Summary 
Thus Far 

� The margin of a linear separator is the distance between it 
and the nearest training data point

� Questions:
1. How can we efficiently find a maximal-margin linear 

separator? By solving a constrained quadratic 
optimization problem using quadratic programming

2. Why are linear separators with larger margins 
better? They’re simpler *waves hands*

3. What can we do if the data is not linearly 
separable? Next!
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Linearly 
Inseparable 
Data

� What can we do if the data is not linearly separable?

1. Accept some non-zero training error

� How much training error should we tolerate?

2. Apply a non-linear transformation that shifts the 
data into a space where it is linearly separable

� How can we pick a non-linear transformation?
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� When - is not linearly separable, there are no feasible 
solutions to this optimization problemSVMs
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subject to . $ $!% $ + " ≥ 1 ∀ % $ , . $ ∈ -

minimize
1

2
$!$



� When - is not linearly separable, there are no feasible 
solutions to this optimization problem

Hard-margin
SVMs
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subject to . $ $!% $ + " ≥ 1 ∀ % $ , . $ ∈ -

minimize
1

2
$!$



Soft-margin 
SVMs
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subject to . $ $!% $ + " ≥ 1 − X $ ∀ % $ , . $ ∈ -

minimize
1

2
$!$+ YZ

$%"

&
X $

subject to X $ ≥ 0 _ _ _ ∀ \ ∈ 1,… ,T



� X $ is the “soft” error on the \34 training data point

� If X $ > 1, then . $ $!% $ + " < 0 ⇒

% $ , . $ is incorrectly classified 

� If 0 < X $ < 1, then . $ $!% $ + " > 0 ⇒

% $ , . $ is correctly classified but inside the margin 

� is the “soft” training error

Soft-margin 
SVMs
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subject to . $ $!% $ + " ≥ 1 − X $ ∀ % $ , . $ ∈ -

minimize
1

2
$!$+ YZ

$%"

&
X $

subject to X $ ≥ 0_ _ _ ∀ \ ∈ 1,… ,T



Soft-margin 
SVMs
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subject to . $ $!% $ + " ≥ 1 − X $ ∀ % $ , . $ ∈ -

minimize
1

2
$!$+ YZ

$%"

&
X $

subject to X $ ≥ 0 _ _ _ ∀ \ ∈ 1,… ,T

� Still solvable using quadratic programming 

� All training data points % $ , . $ ∈ - where 

. $ R$!% $ + Q" ≤ 1 are known as support vectors



Interpreting ! !
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Interpreting ! !
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support 
vector

support 
vector

support 
vector
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Interpreting ! !
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vector
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vector
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Interpreting ! !

“margin”
support 
vector

“margin”
support 
vector

“margin”
support 
vector
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0 < 7 ! < 1

0 < 7 ! < 1

0 < 7 ! < 1

0 < 7 ! < 1
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Interpreting ! !
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7 ! > 1
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Interpreting ! !



Setting !

Smaller Y

� Y is a tradeoff parameter (much like 
the tradeoff parameter in 
regularization)
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Larger Y Hard Margin
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