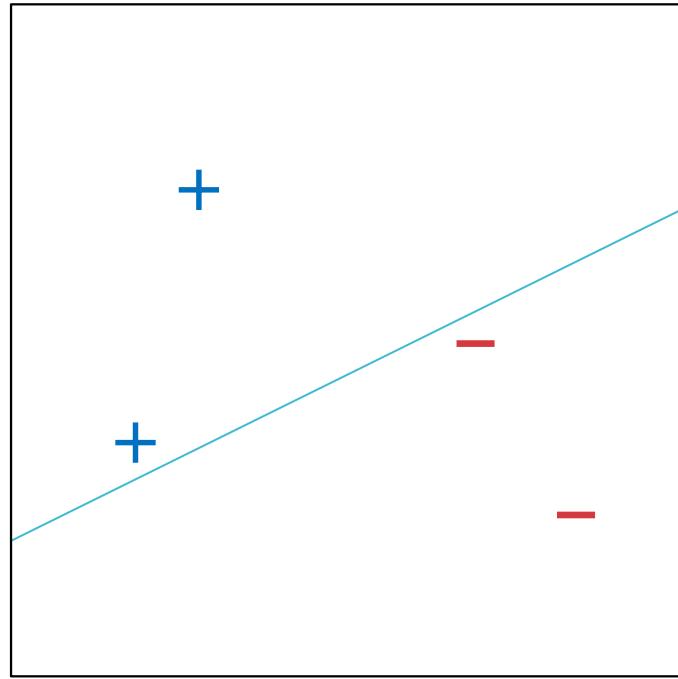
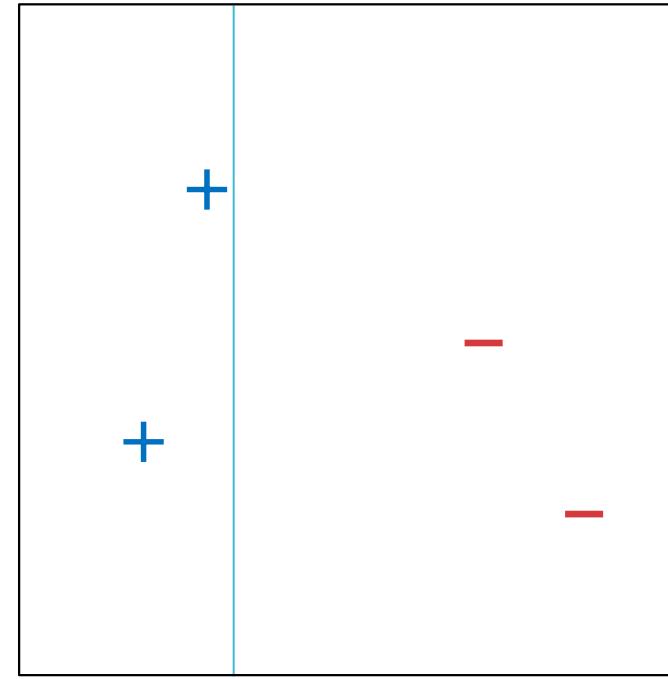
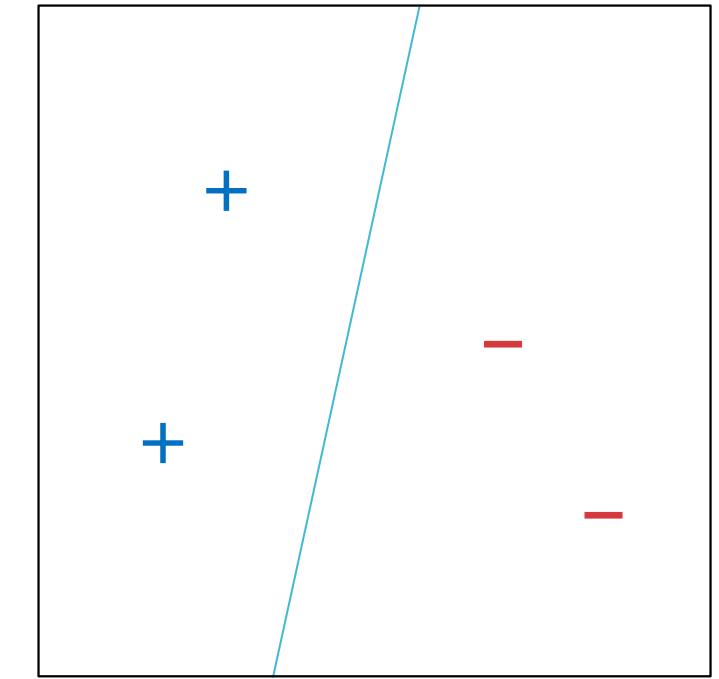


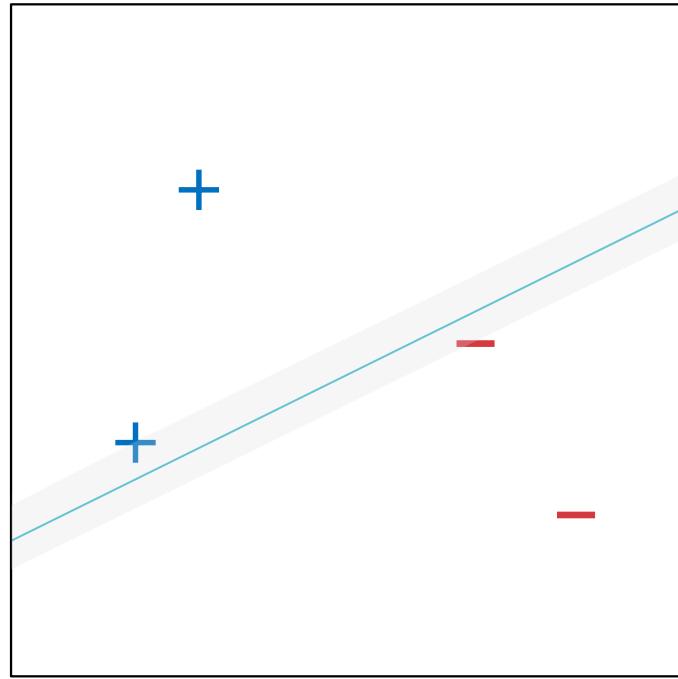
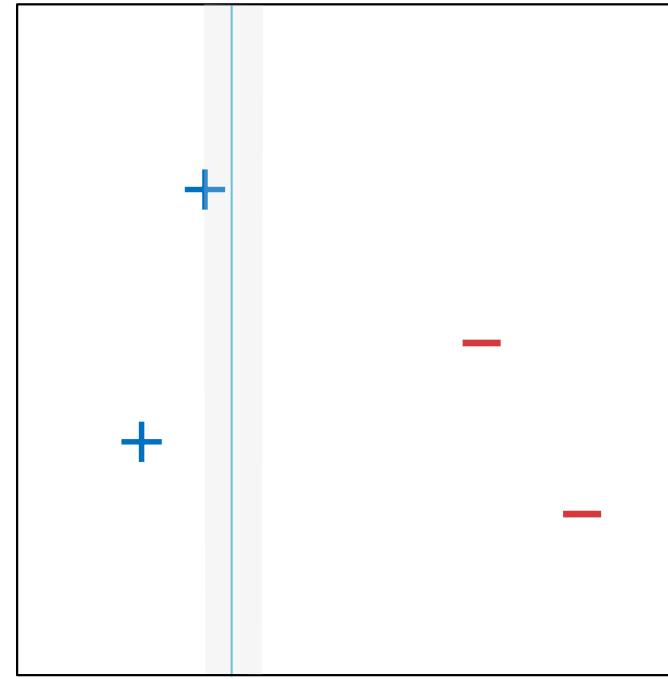
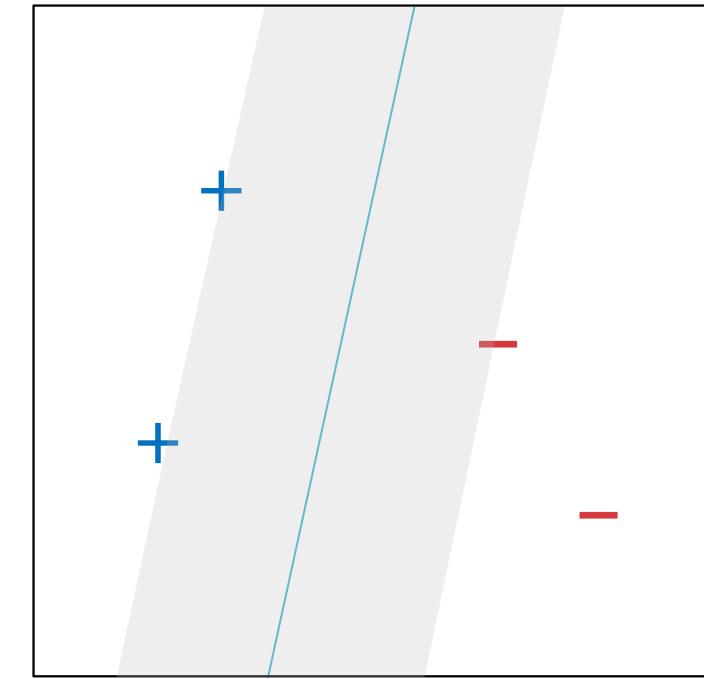
10-315: Introduction to Machine Learning Lecture 15— Support Vector Machines

Henry Chai

3/21/22



Which linear separator is best?



Which linear separator is best?

Maximal Margin Linear Separators

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
 1. How can we efficiently find a maximal-margin linear separator?
 2. Why are linear separators with larger margins better?
 3. What can we do if the data is not linearly separable?

Hyperplanes

- For linear models, decision boundaries are D -dimensional **hyperplanes** defined by a weight vector, $[b, \mathbf{w}]$
$$\mathbf{w}^T \mathbf{x} + b = 0$$
- Problem: there are infinitely many weight vectors that describe the same hyperplane
 - $x_1 + 2x_2 + 2 = 0$ is the same line as $2x_1 + 4x_2 + 4 = 0$, which is the same line as $1000000x_1 + 2000000x_2 + 2000000 = 0$
- Solution: normalize weight vectors *w.r.t. the training data*

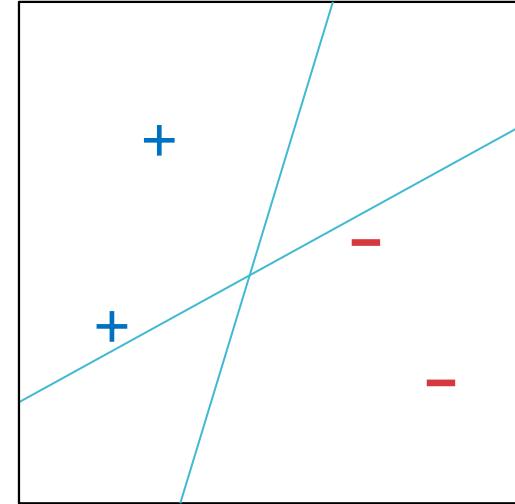
Normalizing Hyperplanes

- Given a dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$ where $y \in \{-1, +1\}$,
 $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ is a valid linear separator if
$$y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$$
- For SVMs, we're going to consider linear separators in the set
$$\mathcal{H} = \{\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) : \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) = 1\}$$
- If $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ is a linear separator, then
$$\hat{y} = \text{sign}\left(\frac{\mathbf{w}^T}{\rho} \mathbf{x} + \frac{b}{\rho}\right) \in \mathcal{H} \text{ where}$$

$$\rho = \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b)$$

Normalizing Hyperplanes: Example

b	w_1	w_2	
-0.2	-0.6	1	$\notin \mathcal{H}$
-0.4	-1.2	2	$\notin \mathcal{H}$
-2	-6	10	$\notin \mathcal{H}$
-10	-30	50	$\in \mathcal{H}$
0.2	-0.6	0.2	$\notin \mathcal{H}$
0.1	-0.3	0.1	$\notin \mathcal{H}$
1	-3	1	$\notin \mathcal{H}$
2	-6	2	$\in \mathcal{H}$



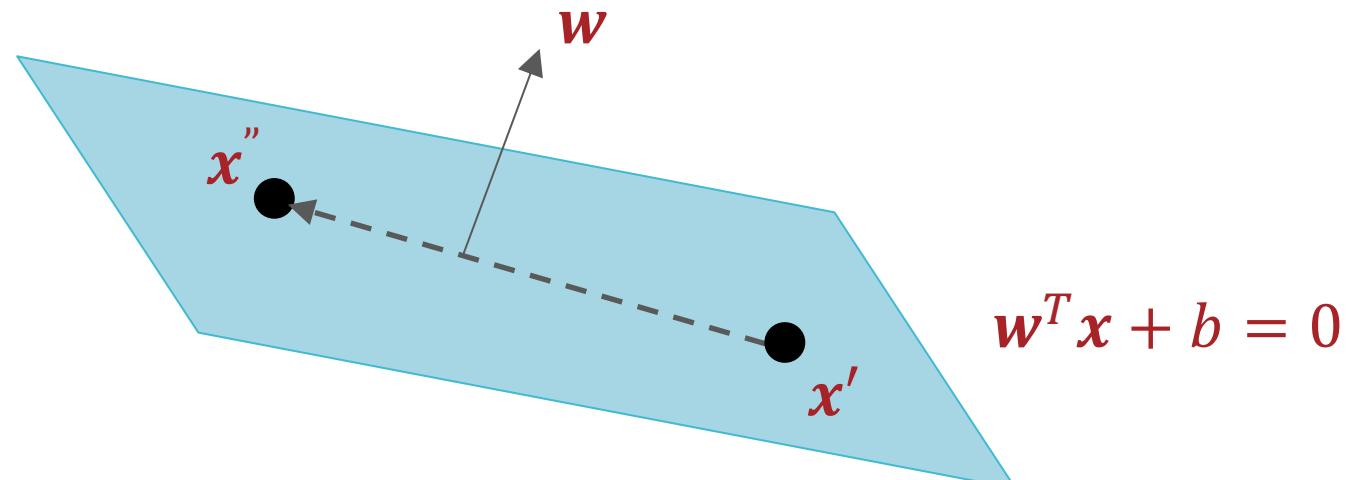
x_1	x_2	y	$y(\mathbf{w}^T \mathbf{x} + b)$
0.2	0.4	+1	1.6
0.3	0.8	+1	1.8
0.7	0.6	-1	1
0.8	0.3	-1	2.2

Computing the Margin

- Claim: \mathbf{w} is orthogonal to the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- Vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are orthogonal if $\boldsymbol{\alpha}^T \boldsymbol{\beta} = 0$
- Proof:
 - Let \mathbf{x}' and \mathbf{x}'' be two arbitrary points on $\mathbf{w}^T \mathbf{x} + b = 0$
 - $\mathbf{x}' - \mathbf{x}''$ is a vector on $\mathbf{w}^T \mathbf{x} + b = 0$
 - $\mathbf{w}^T \mathbf{x} + b = 0 \rightarrow \mathbf{w}^T \mathbf{x} = -b$
 - $\mathbf{w}^T (\mathbf{x}' - \mathbf{x}'') = \mathbf{w}^T \mathbf{x}' - \mathbf{w}^T \mathbf{x}'' = -b + b = 0$ ■

Computing the Margin

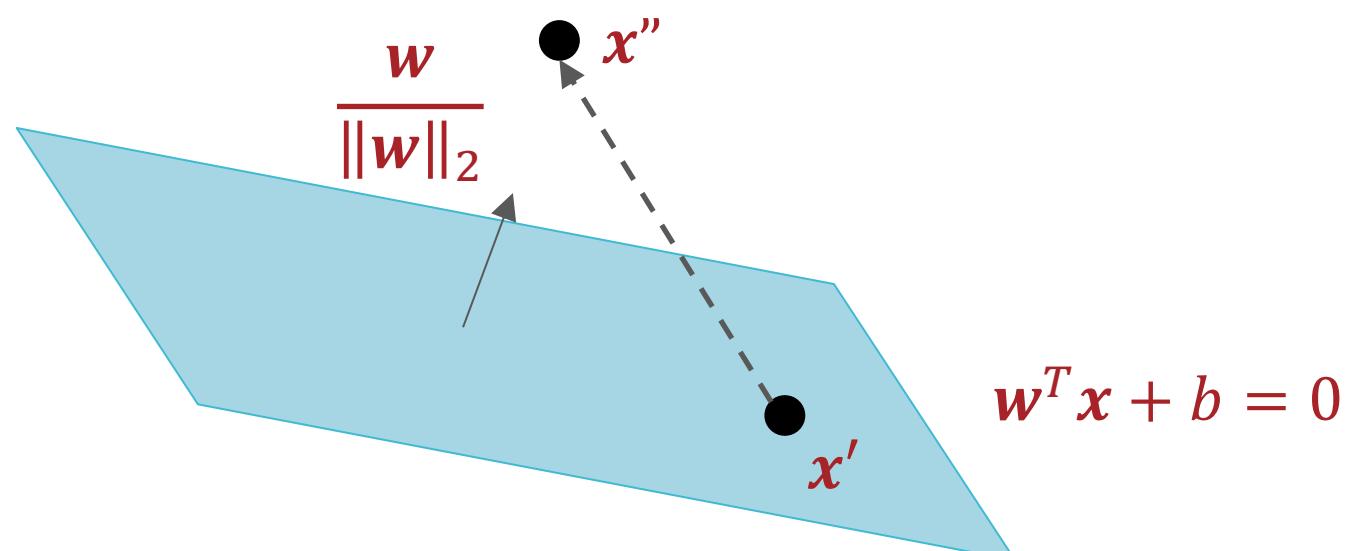
- Claim: \mathbf{w} is orthogonal to the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- Vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are orthogonal if $\boldsymbol{\alpha}^T \boldsymbol{\beta} = 0$



Computing the Margin

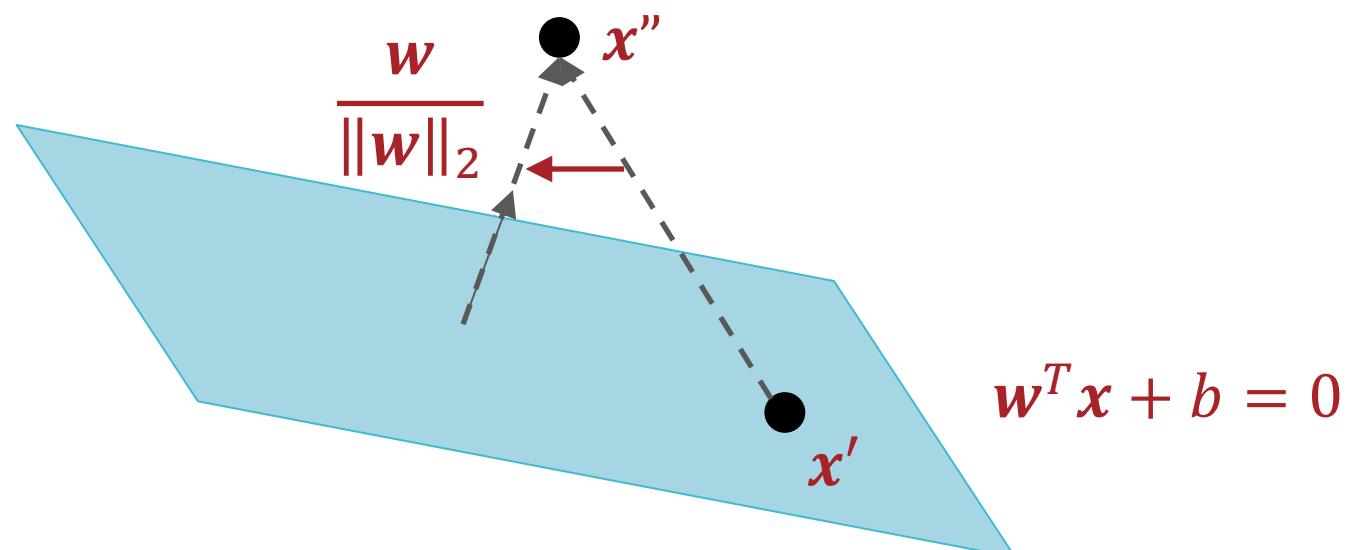
- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to

the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$,
the unit vector orthogonal to the hyperplane



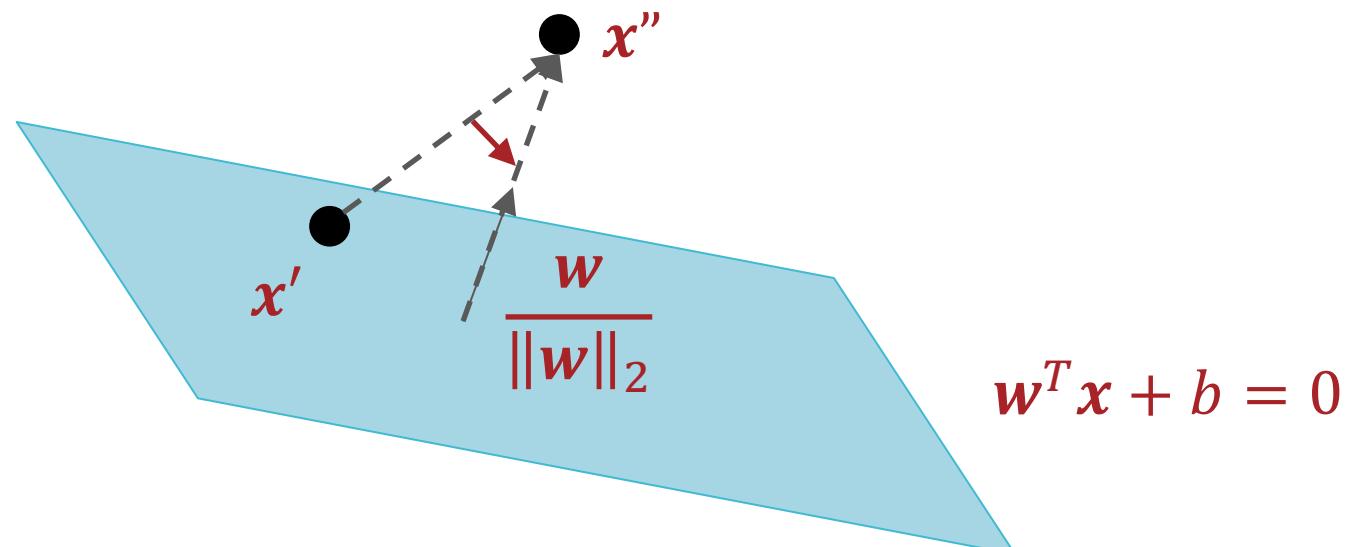
Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane

$$\begin{aligned} d(\mathbf{x}'', h) &= \left| \frac{\mathbf{w}^T(\mathbf{x}'' - \mathbf{x}')}{\|\mathbf{w}\|_2} \right| = \frac{|\mathbf{w}^T \mathbf{x}'' - \mathbf{w}^T \mathbf{x}'|}{\|\mathbf{w}\|_2} \\ &= \frac{|\mathbf{w}^T \mathbf{x}'' + b|}{\|\mathbf{w}\|_2} \end{aligned}$$

Computing the Margin

- The margin of a linear separator is the distance between it and the nearest training data point

$$\begin{aligned} d(\mathbf{x}^{(i)}, h) &= \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} \frac{|\mathbf{w}^T \mathbf{x}^{(i)} + b|}{\|\mathbf{w}\|_2} \\ &= \frac{1}{\|\mathbf{w}\|_2} \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} |\mathbf{w}^T \mathbf{x}^{(i)} + b| \\ &= \frac{1}{\|\mathbf{w}\|_2} \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \\ &= \frac{1}{\|\mathbf{w}\|_2} \end{aligned}$$

Maximizing the Margin

$$\begin{aligned} & \text{maximize} && \frac{1}{\|\mathbf{w}\|_2} \\ & \text{subject to} && \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) = 1 \\ & && \Updownarrow \\ & \text{minimize} && \|\mathbf{w}\|_2 \\ & \text{subject to} && \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) = 1 \\ & && \Updownarrow \\ & \text{minimize} && \frac{1}{2} \|\mathbf{w}\|_2^2 \\ & \text{subject to} && \min_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) = 1 \\ & && \Updownarrow \\ & \text{minimize} && \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} && y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

Maximizing the Margin

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

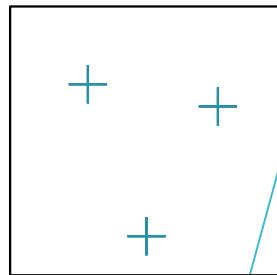
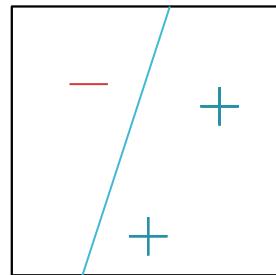
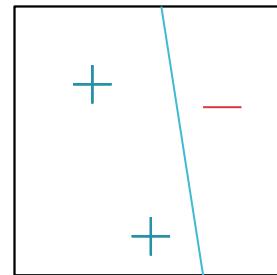
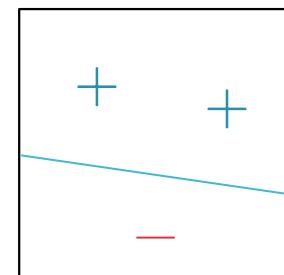
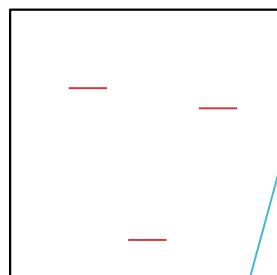
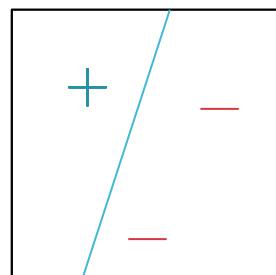
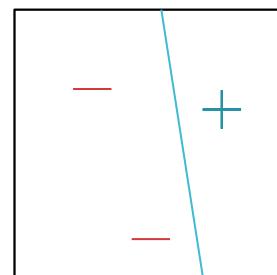
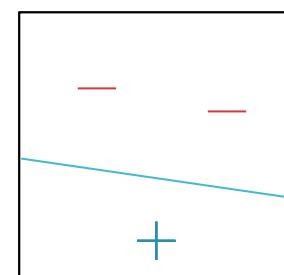
- If $[\hat{b}, \hat{\mathbf{w}}]$ is the optimal solution, then \exists at least one training data point $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ s.t $y^{(i)} (\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b}) = 1$
 - All training data points $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)} (\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b}) = 1$ are known as *support vectors*
- Converting the non-linear constraint (involving the \min) to N linear constraints means we can use quadratic programming (QP) to solve this problem in $O(D^3)$ time

Recipe for SVMs

- Define a model and model parameters
 - Assume a linear decision boundary (with normalized weights)
$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$
 - Parameters: $\mathbf{w} = [w_1, \dots, w_D]$ and b
 - Write down an objective function (with constraints)
$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$
- Optimize the objective w.r.t. the model parameters
 - Solve using quadratic programming

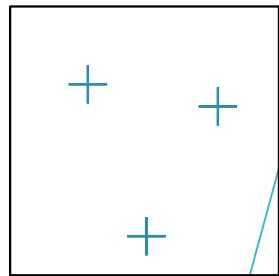
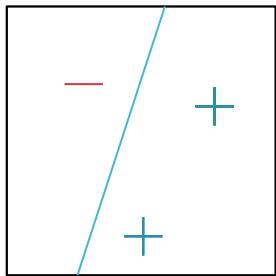
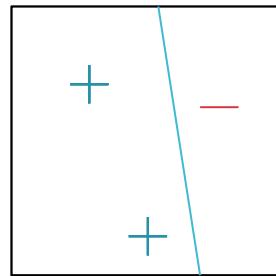
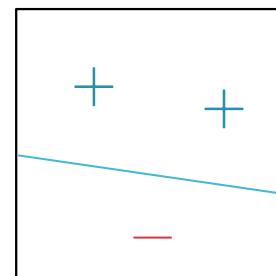
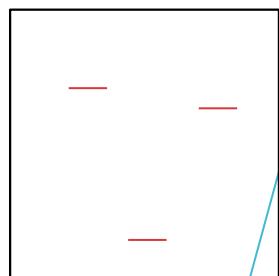
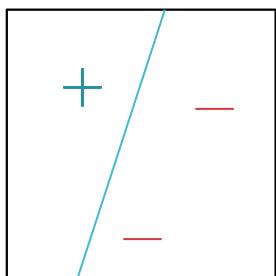
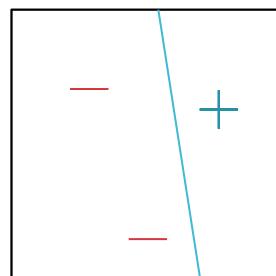
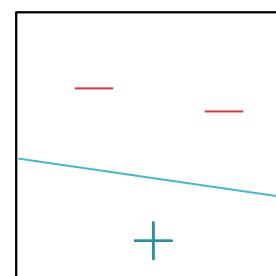
Why Maximal Margins?

- Consider three binary data points in a **bounded** 2-D space
- Let \mathcal{H} = {all linear separators} and
 \mathcal{H}_ρ = {all linear separators with minimum margin ρ }



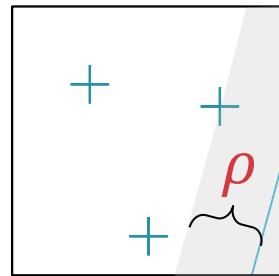
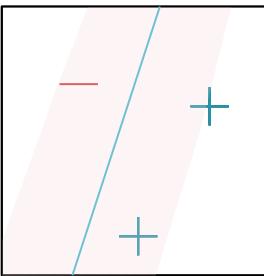
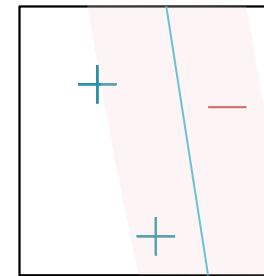
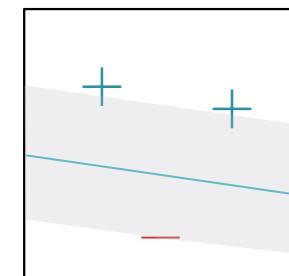
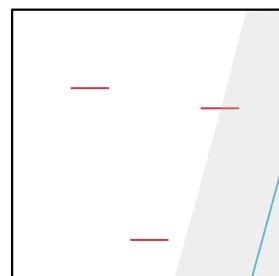
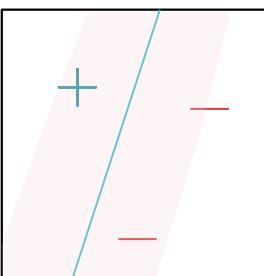
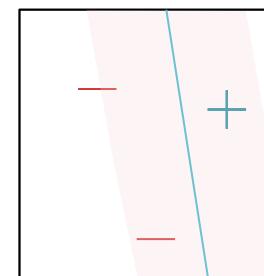
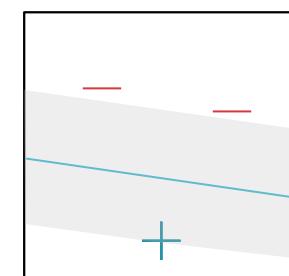
Why Maximal Margins?

- Consider three binary data points in a bounded 2-D space
- \mathcal{H} = {all linear separators} can always correctly classify any three (non-collinear) data points in this space



Why Maximal Margins?

- Consider three binary data points in a bounded 2-D space
- $\mathcal{H}_\rho = \{\text{all linear separators with minimum margin } \rho\}$ cannot always correctly classify three non-collinear data points



Summary Thus Far

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
 1. How can we efficiently find a maximal-margin linear separator? **By solving a constrained quadratic optimization problem using quadratic programming**
 2. Why are linear separators with larger margins better? **They're simpler *waves hands***
 3. What can we do if the data is not linearly separable? **Next!**

Linearly Inseparable Data

- What can we do if the data is not linearly separable?
 1. Accept some non-zero training error
 - How much training error should we tolerate?
 2. Apply a non-linear transformation that shifts the data into a space where it is linearly separable
 - How can we pick a non-linear transformation?

SVMs

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

- When \mathcal{D} is not linearly separable, there are no feasible solutions to this optimization problem

Hard-margin SVMs

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

- When \mathcal{D} is not linearly separable, there are no feasible solutions to this optimization problem

Soft-margin SVMs

$$\begin{aligned} & \text{minimize} && \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)} \\ & \text{subject to} && y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi^{(i)} \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \\ & && \xi^{(i)} \geq 0 \quad \forall i \in \{1, \dots, N\} \end{aligned}$$

Soft-margin SVMs

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi^{(i)} \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \\ & \quad \xi^{(i)} \geq 0 \quad \forall i \in \{1, \dots, N\} \end{aligned}$$

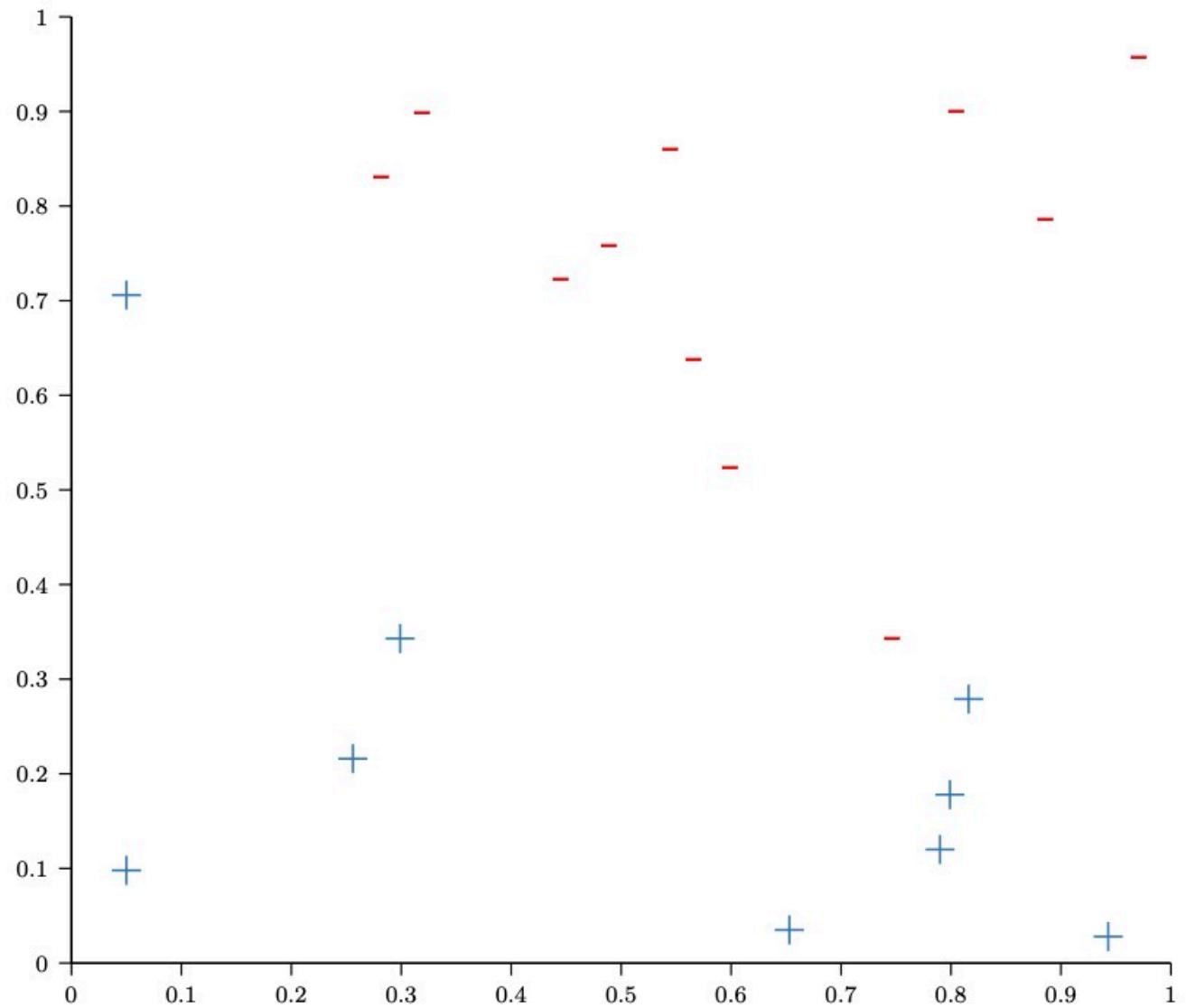
- $\xi^{(i)}$ is the “soft” error on the i^{th} training data point
 - If $\xi^{(i)} > 1$, then $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) < 0 \Rightarrow (\mathbf{x}^{(i)}, y^{(i)})$ is incorrectly classified
 - If $0 < \xi^{(i)} < 1$, then $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0 \Rightarrow (\mathbf{x}^{(i)}, y^{(i)})$ is correctly classified but inside the margin
- $\sum_{i=1}^N \xi^{(i)}$ is the “soft” training error

Soft-margin SVMs

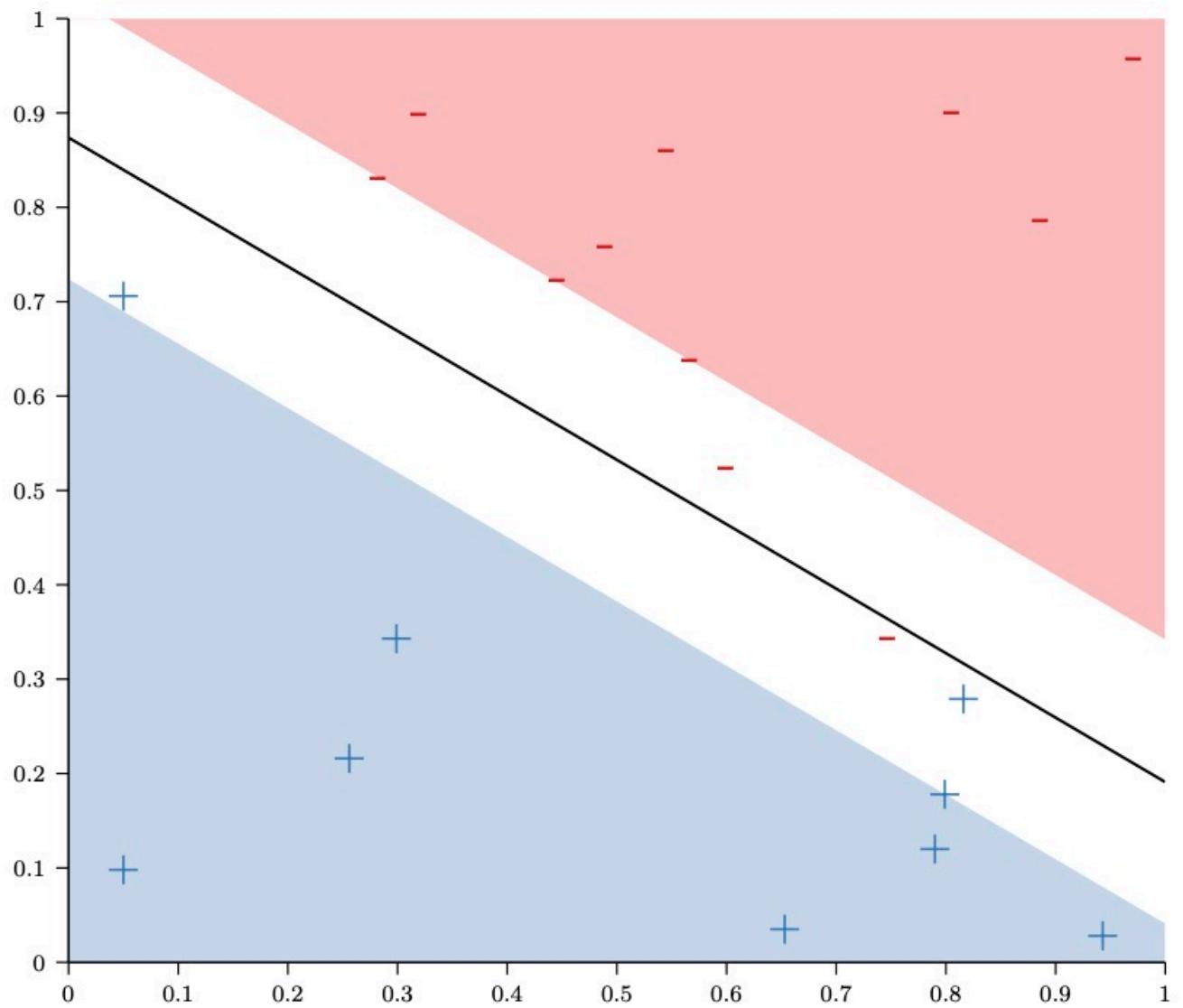
$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi^{(i)} \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \\ & \quad \xi^{(i)} \geq 0 \quad \forall i \in \{1, \dots, N\} \end{aligned}$$

- Still solvable using quadratic programming
- All training data points $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)} (\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b}) \leq 1$ are known as *support vectors*

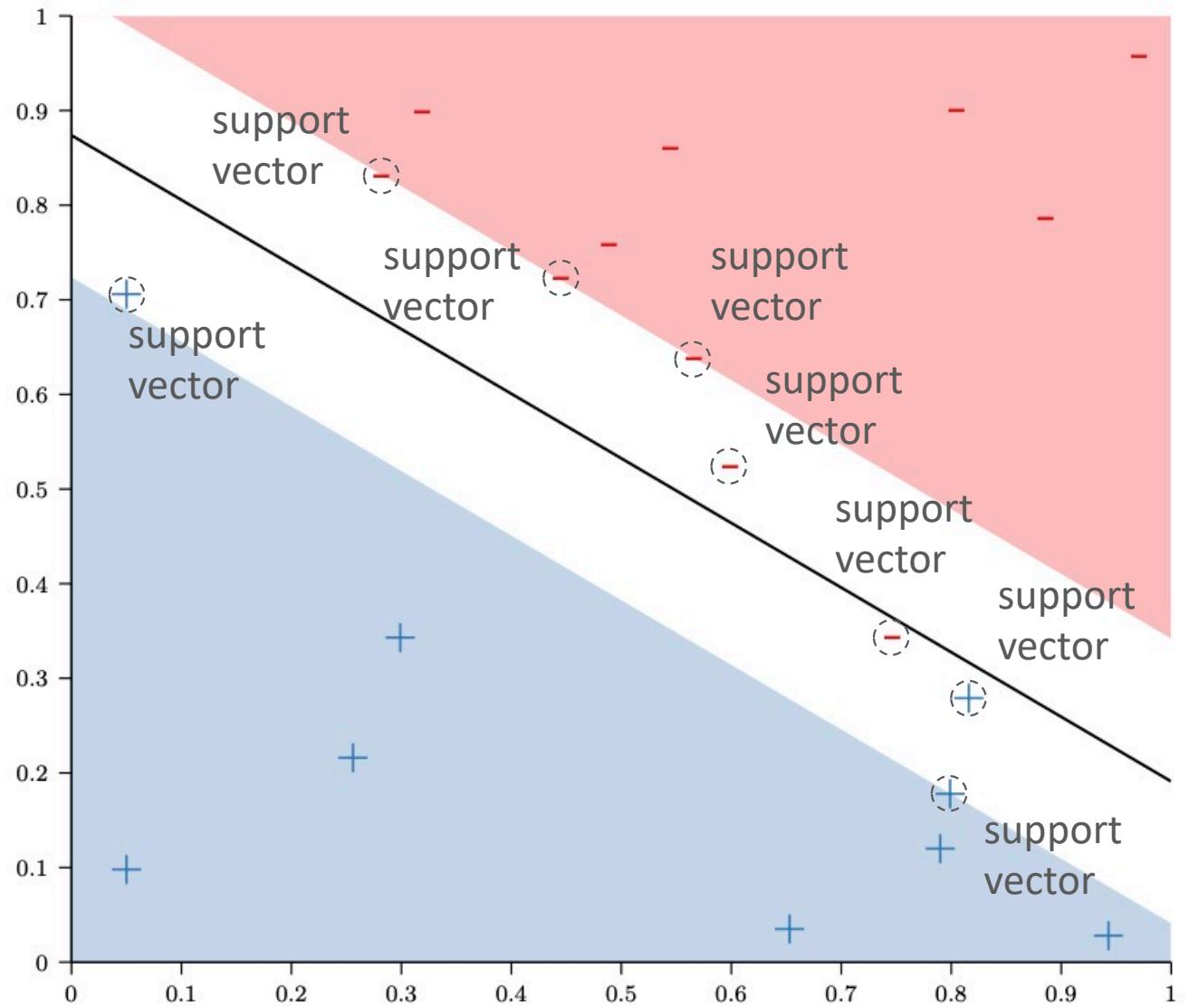
Interpreting $\xi^{(i)}$



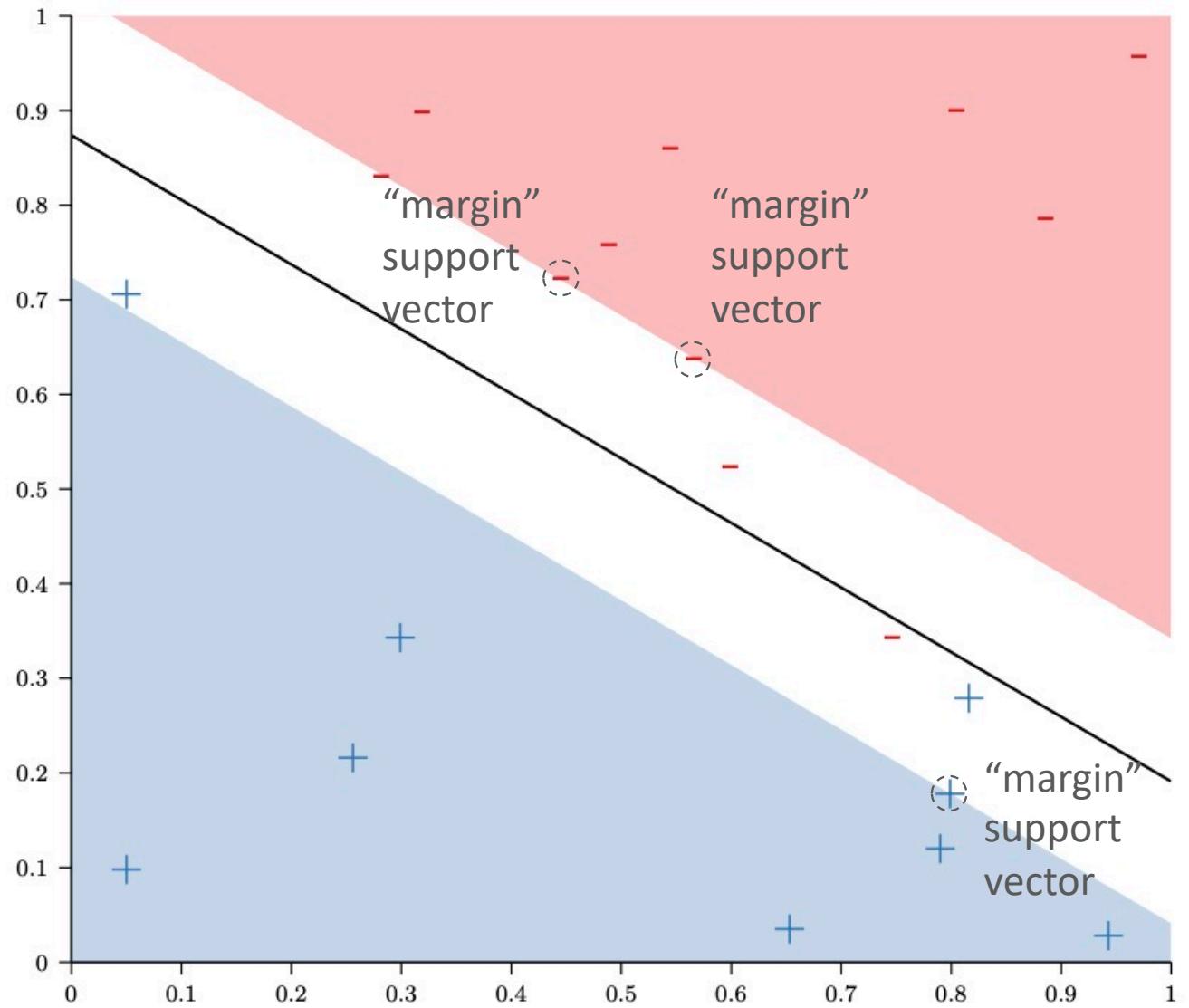
Interpreting $\xi^{(i)}$



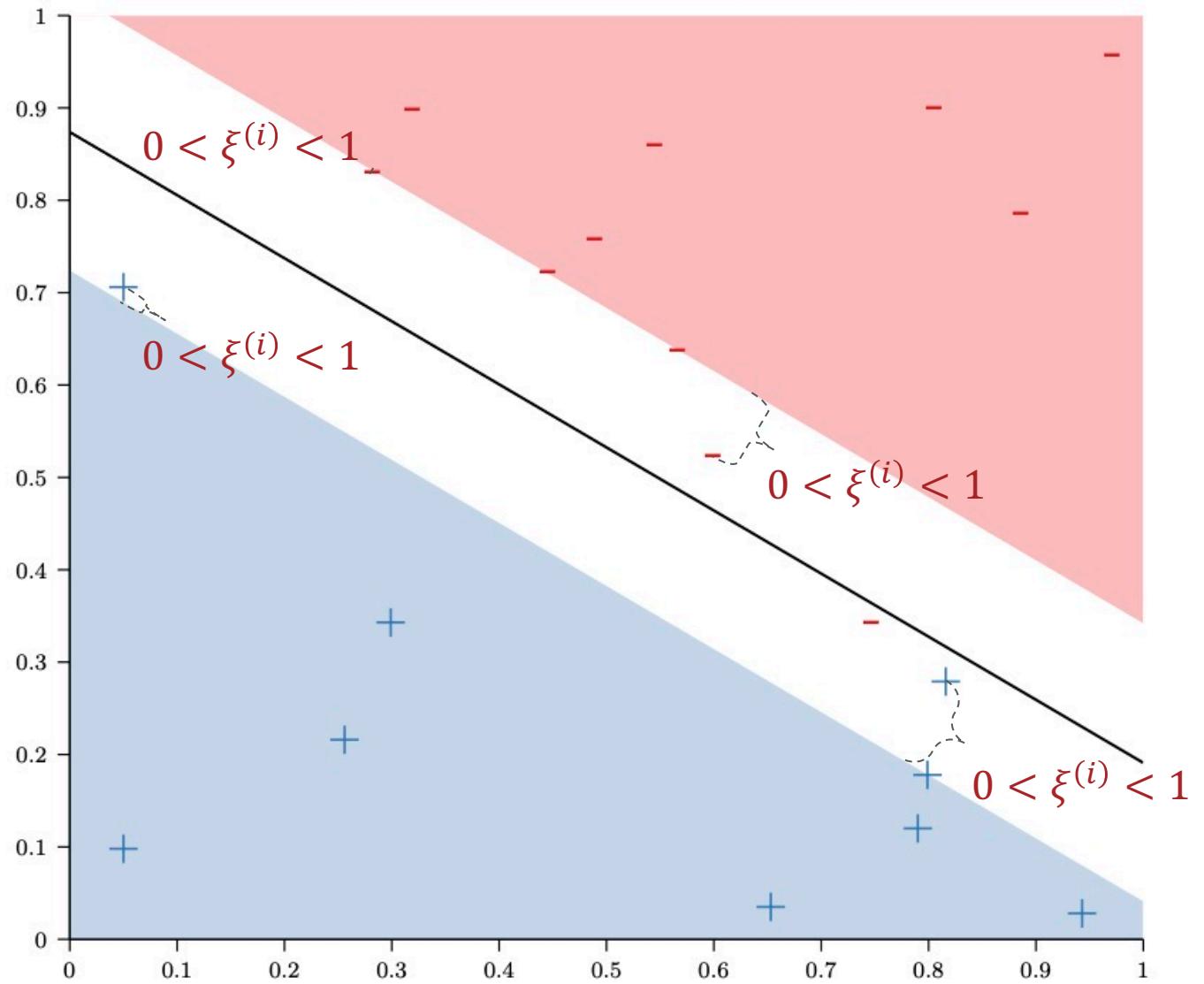
Interpreting $\xi^{(i)}$



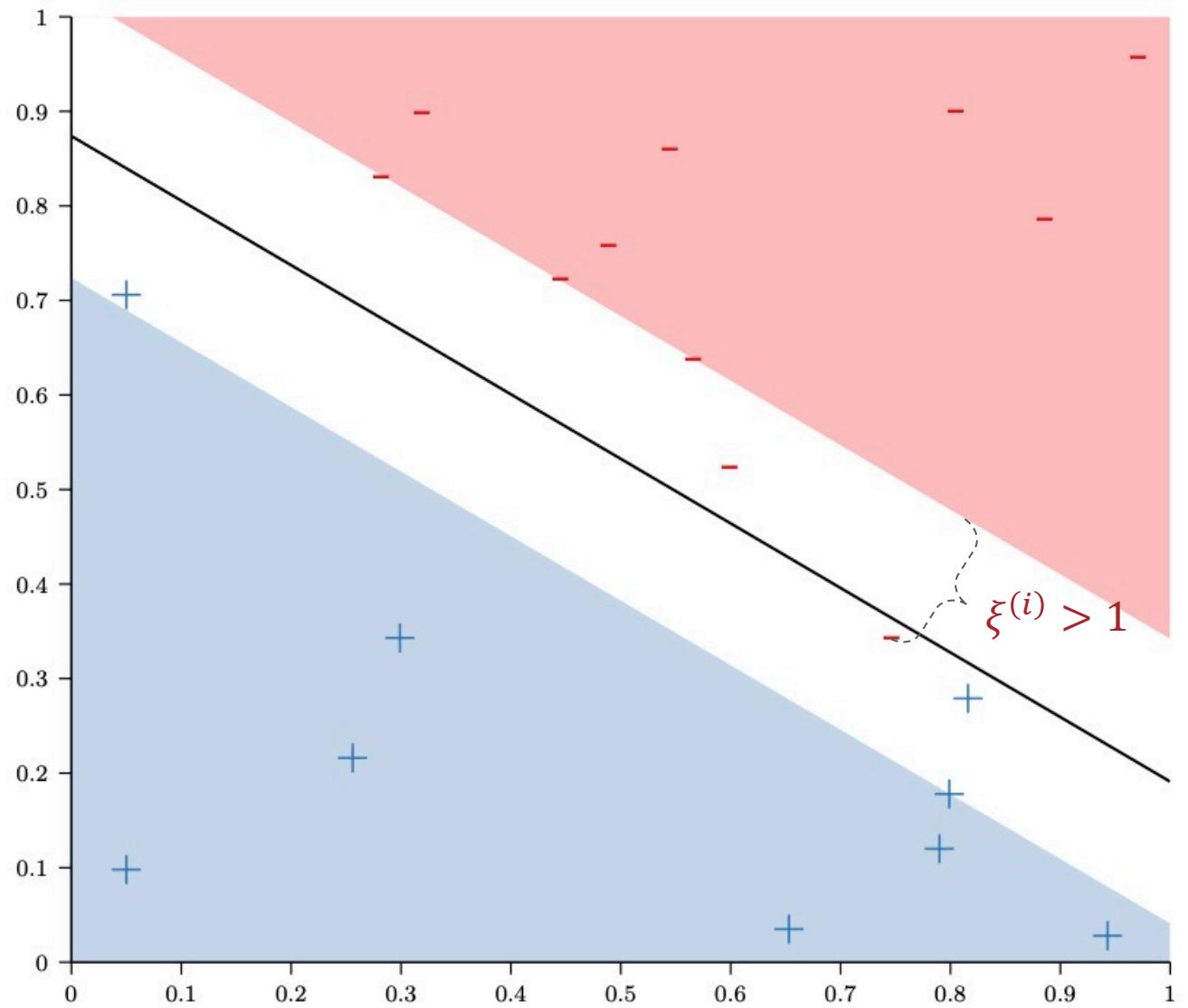
Interpreting $\xi^{(i)}$

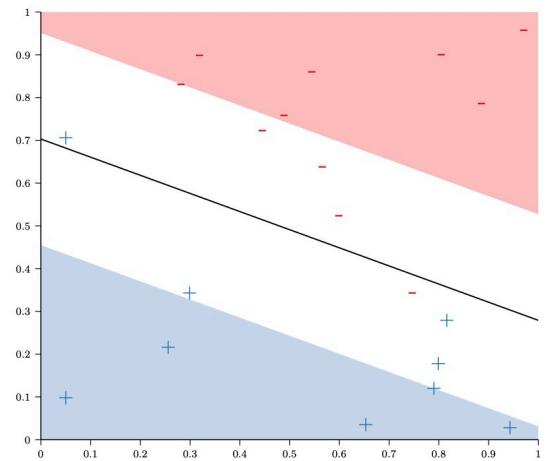


Interpreting $\xi^{(i)}$

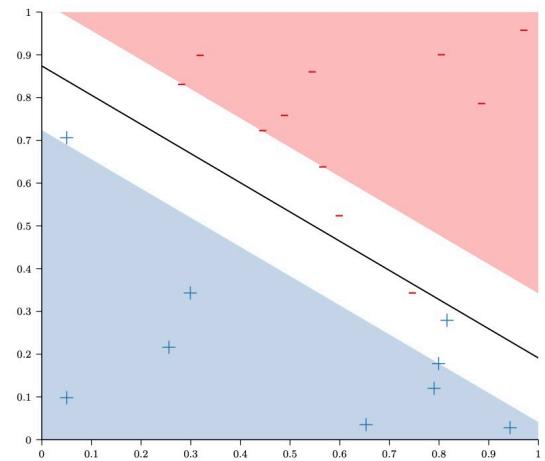


Interpreting $\xi^{(i)}$

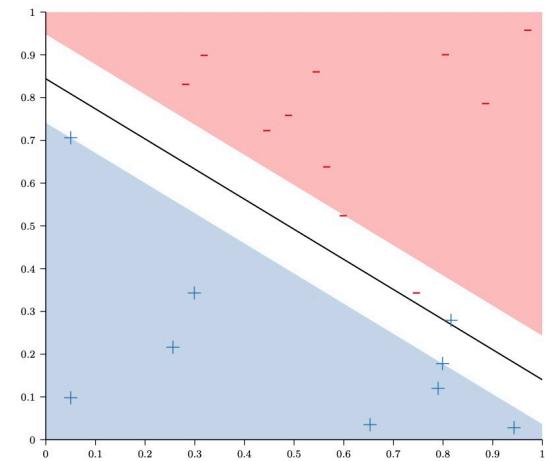




Smaller C



Larger C



Hard Margin

Setting C

C is a tradeoff parameter (much like the tradeoff parameter in regularization)