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Linear 
Regression

� Given design matrix

𝑨 =

1 𝑋!
1 𝑋"
⋮ ⋮
1 𝑋#

=

1 𝑋!
! ⋯ 𝑋!

$

1 𝑋"
! ⋯ 𝑋"

$

⋮ ⋮ ⋱ ⋮
1 𝑋#

! ⋯ 𝑋#
$

∈ ℝ#×$&!

� and target vector

𝒀 =

𝑌!
𝑌"
⋮
𝑌#

∈ ℝ#

� the goal of linear regression is to find 

,𝛽 = argmin
'

𝐽 𝛽 = argmin
'

1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀
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Poll Review: Is 
𝐽 𝛽 convex in 
𝛽?
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𝐽 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

A) Convex, quadratic in 𝛽
B) Non-convex, 𝑨 may not be positive semi-definite
C) Depends on conditioning (ratio of max:min

eigenvalues) of 𝑨(𝑨
D) Convex, 𝑨(𝑨 is positive semi-definite



Minimizing the 
Mean Squared 
Error
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𝐽 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

∇'𝐽 𝛽 =
1
𝑛
2𝑨(𝑨𝛽 − 2𝑨(𝒀

𝐽 𝛽 =
1
𝑛
𝛽(𝑨(𝑨𝛽 − 2𝛽(𝑨(𝒀 − 𝒀(𝒀

∇'𝐽 ,𝛽 =
1
𝑛
2𝑨(𝑨 ,𝛽 − 2𝑨(𝒀 = 0

𝑨(𝑨 ,𝛽 = 𝑨(𝒀

,𝛽 = 𝑨(𝑨 )!𝑨(𝒀



Minimizing the 
Mean Squared 
Error

5Henry Chai - 2/7/22

,𝛽 = 𝑨(𝑨 )!𝑨(𝒀

1. Is 𝑨(𝑨 invertible?

When 𝑛 ≫ 𝑝 + 1, 𝑨(𝑨 is (almost always) full rank and 
therefore, invertible

2. If so, how computationally expensive is inverting 𝑨(𝑨?

𝑨(𝑨 ∈ 𝑅$&!×$&! so inverting 𝑨(𝑨 takes 𝑂 𝑝* time! 
Can use gradient descent to  speed things up:

𝛽 +&! = 𝛽 + − 𝜂∇'𝐽 𝛽 = 𝛽 + −
2𝜂
𝑛

𝑨(𝑨𝛽 − 𝑨(𝒀



Linear 
Models
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Linear 
Models
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Linear 
Models
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Linear 
Models?
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Linear 
Models?

Henry Chai - 2/9/22 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

--
-

-

--

-

-

-

-

-

-

-

-

-



Linear 
Models?
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Nonlinear 
Models
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Feature 
Transforms

� Given 𝑝-dimensional inputs 𝑋 = 𝑋 ! , … , 𝑋 $ , first 
compute some transformation of our input, e.g.,

𝜙 𝑋 ! , 𝑋 " = 𝑋 ! − 0.5
"
, 𝑋 " − 0.5

"
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Nonlinear 
Models
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Nonlinear 
Models
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Nonlinear 
Models
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Nonlinear 
Models
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General
𝑘!"-order 
Transforms 

� 𝜙!,! 𝑋 # , 𝑋 ! = 𝑋 # , 𝑋 ! , 𝑋 # !
, 𝑋 # 𝑋 ! , 𝑋 ! !

� 𝜙!,$ 𝑋 # , 𝑋 ! =

𝜙!,! 𝑋 # , 𝑋 ! , 𝑋 # $
, 𝑋 # !

𝑋 ! , 𝑋 # 𝑋 ! !
, 𝑋 ! $

� 𝜙!,% 𝑋 # , 𝑋 ! =

[𝜙!,$ 𝑋 # , 𝑋 ! , 𝑋 # %
, 𝑋 # $

𝑋 ! , 𝑋 # !
𝑋 ! !

, 𝑋 # 𝑋 ! $
, 𝑋 ! %

]

� 𝜙!,& maps a 2-dimensional input to a  & &'$
!

-dimensional output 

� Scales even worse for higher-dimensional inputs…
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Linear 
Models
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Nonlinear 
Models?
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Feature 
Transforms: 
Tradeoffs

Low-Dimensional 
Input Space

High-Dimensional 
Input Space

Training Error High Low
Generalization Good Bad 

Overfitting
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Feature 
Transforms: 
Experiment

� 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 20

� Targets are generated by a 10,--order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎"

� ℱ" = 2./-order polynomials 

� 𝜙!," 𝑋 = 𝑋, 𝑋"

� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1

𝑌 = J
891

!1

𝑎8𝑋8 + 𝜖
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Poll 1: Which 
model do you 
think will have 
lower training
error?

A. ℱ#
B. ℱ$%

� 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 20

� Targets are generated by a 10,--order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎"

� ℱ" = 2./-order polynomials 

� 𝜙!," 𝑋 = 𝑋, 𝑋"

� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1

𝑌 = J
891

!1

𝑎8𝑋8 + 𝜖
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Poll 2: Which 
model do you 
think will have 
lower true
error?

A. ℱ#
B. ℱ$%

� 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 20

� Targets are generated by a 10,--order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎"

� ℱ" = 2./-order polynomials 

� 𝜙!," 𝑋 = 𝑋, 𝑋"

� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1

𝑌 = J
891

!1

𝑎8𝑋8 + 𝜖
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Noisy Targets
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Target Function
Noisy Samples

• 10-dimensional target 
function with additive 
Gaussian noise

• ℱ" = 2./-order polynomial

• ℱ!1 = 10,--order 

polynomial
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Noisy Targets
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2nd-Order Hypothesis
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• 10-dimensional target 
function with additive 
Gaussian noise

• ℱ" = 2./-order polynomial

• ℱ!1 = 10,--order 

polynomial



Noisy Targets
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• 10-dimensional target 
function with additive 
Gaussian noise

• ℱ" = 2./-order polynomial

• ℱ!1 = 10,--order 

polynomial



Noisy Targets
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• 10-dimensional target 
function with additive 
Gaussian noise

• ℱ" = 2./-order polynomial

• ℱ!1 = 10,--order 

polynomial



Noisy Targets

ℱ" ℱ!1
Training 

Error
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Feature 
Transforms: 
Experiment

� 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 100

� Targets are generated by a 10,--order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎"

� ℱ" = 2./-order polynomials 

� 𝜙!," 𝑋 = 𝑋, 𝑋"

� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1
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𝑌 = J
891

!1

𝑎8𝑋8 + 𝜖



Noisy Targets

ℱ" ℱ!1
Training 

Error
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Error
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Regularization
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� Constrain models to prevent them from overfitting

� Learning algorithms are optimization problems and 
regularization imposes constraints on the optimization



Hard 
Constraints

� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1

� Given 𝑨 =

1 𝜙!," 𝑋!
1 𝜙!," 𝑋"
⋮ ⋮
1 𝜙!," 𝑋#

and 𝒀 =

𝑌!
𝑌"
⋮
𝑌#

find                 

𝛽 = 𝛽1, 𝛽!, 𝛽", 𝛽*, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽!1 that minimizes

� Subject to
𝛽* = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽!1 = 0

33

1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀
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Hard 
Constraints

34

1
𝑛
J
:9!

#

J
891

!1

𝑋:8𝛽8 − 𝑌:

"
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� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1

� Given 𝑨 =

1 𝜙!," 𝑋!
1 𝜙!," 𝑋"
⋮ ⋮
1 𝜙!," 𝑋#

and 𝒀 =

𝑌!
𝑌"
⋮
𝑌#

find                 

𝛽 = 𝛽1, 𝛽!, 𝛽", 𝛽*, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽!1 that minimizes

� Subject to
𝛽* = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽!1 = 0



Hard 
Constraints
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1
𝑛
J
:9!

#

J
891

"

𝑋:8𝛽8 − 𝑌:

"
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� ℱ!1 = 10,--order polynomials

� 𝜙!,!1 𝑋 = 𝑋, 𝑋", 𝑋*, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋!1

� Given 𝑨 =

1 𝜙!," 𝑋!
1 𝜙!," 𝑋"
⋮ ⋮
1 𝜙!," 𝑋#

and 𝒀 =

𝑌!
𝑌"
⋮
𝑌#

find                 

𝛽 = 𝛽1, 𝛽!, 𝛽", 𝛽*, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽!1 that minimizes

� Subject to nothing!



Hard 
Constraints
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1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

� ℱ" = 2./-order polynomials

� 𝜙!," 𝑋 = 𝑋, 𝑋"

� Given 𝑨 =

1 𝜙!," 𝑋!
1 𝜙!," 𝑋"
⋮ ⋮
1 𝜙!," 𝑋#

and 𝒀 =

𝑌!
𝑌"
⋮
𝑌#

find                 

𝛽 = 𝛽1, 𝛽!, 𝛽" that minimizes

� Subject to nothing!



Soft 
Constraints

37

� More generally, 𝜙 can be any nonlinear transformation, 

e.g., exp, log, sin, sqrt, etc... 

� Given 𝑨 =
1 𝜙! 𝑋! ⋯ 𝜙; 𝑋!
⋮ ⋮ ⋱ ⋮
1 𝜙! 𝑋# ⋯ 𝜙; 𝑋!

and 𝒀 =

𝑌!
𝑌"
⋮
𝑌#

, 

find 𝛽 that minimizes

� Subject to:

𝛽 "
" = 𝛽(𝛽 = J

891

;

𝛽8" ≤ 𝐶

1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀
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𝛽(𝛽 = 𝐶

0,0

subject to 𝛽(𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

,𝛽

𝐽 𝛽

Soft 
Constraints



𝛽(𝛽 = 𝐶

0,0

,𝛽
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subject to 𝛽(𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

𝐽 𝛽

Soft 
Constraints



0,0

,𝛽<=>

40

∇'𝐽 ,𝛽<=>

∇'𝐽 ,𝛽<=> ∝ −
2
𝑛
,𝛽<=>

∇'𝐽 ,𝛽<=> = −
2
𝑛
𝜆? ,𝛽<=>

∇'𝐽 ,𝛽<=> +
2
𝑛 𝜆?

,𝛽<=> = 0

∇' 𝐽 ,𝛽<=> +
𝜆?
𝑛

,𝛽<=>
( ,𝛽<=> = 0

Henry Chai - 2/9/22

subject to 𝛽(𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

𝐽 𝛽

𝛽(𝛽 = 𝐶

,𝛽Soft 
Constraints



41

minimize 𝐽=@A 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀 +

𝜆?
𝑛
𝛽(𝛽

⇕

Henry Chai - 2/9/22

Soft 
Constraints: 
Solving for &𝛽&'(

subject to 𝛽(𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀
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∇'𝐽=@A 𝛽 =
2
𝑛
𝑨(𝑨𝛽 − 𝑨(𝒀 + 𝜆?𝛽

2
𝑛
𝑨(𝑨 ,𝛽<=> − 𝑨(𝒀 + 𝜆? ,𝛽<=> = 0

𝑨(𝑨 + 𝜆?𝐼;&! ,𝛽<=> = 𝑨(𝒀

,𝛽<=> = 𝑨(𝑨 + 𝜆?𝐼;&! )!𝑨(𝒀

Henry Chai - 2/9/22

minimize 𝐽=@A 𝛽 =
1
𝑛
𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀 +

𝜆?
𝑛
𝛽(𝛽

Ridge 
Regression

Adding this positive (𝜆? ≥ 0) diagonal 

matrix can help if 𝑨(𝑨 is under-determined! 
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Ridge Regression
� 10-dimensional target function with 

additive Gaussian noise

� ℱ!1 = 10,--order polynomial

Henry Chai - 2/9/22
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𝝀𝑪 = 𝟎 𝝀𝑪 = 𝟏𝟎)𝟔 𝝀𝑪 = 𝟏𝟎)𝟑 𝝀𝑪 = 𝟏
True 
Error

0.059 0.006 0.008 0.011

Overfit Nice! Wait… Underfit

Ridge Regression

Henry Chai - 2/7/22



Setting 𝜆
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Overfitting
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Setting 𝜆



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

�

A
ve
ra
ge

T
ru
e
E
rr
or

ov
er

10
00

T
ri
al
s

47

Underfitting
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Setting 𝜆
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Setting 𝜆



Other 
Regularizers

Henry Chai - 2/9/22 49

𝐽 𝛽 + 𝜆 𝑝𝑒𝑛 𝛽

Ridge or 𝐿2 𝑝𝑒𝑛 𝛽 = 𝛽 "
" = J

891

$

𝛽8"
Encourages 
small 
weights

Lasso or 𝐿1 𝑝𝑒𝑛 𝛽 = 𝛽 ! = J
891

$

𝛽8
Encourages 
sparsity

𝐿0 𝑝𝑒𝑛 𝛽 = 𝛽 1 = J
891

$

𝟙 𝛽8 ≠ 0
Encourages 
sparsity 
(intractable) 
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Other Regularizers

Henry Chai - 2/9/22

0,0

,𝛽

𝐽 𝛽

0,0

,𝛽

𝐽 𝛽

0,0

,𝛽

𝐽 𝛽

Ridge or 𝐿2 Lasso or 𝐿1 𝐿0



M(C)LE for 
Linear 
Regression 

� If we assume a linear model with additive Gaussian noise 

𝑌 = 𝑋𝛽 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎" → 𝑌 ∼ 𝑁 𝑋𝛽, 𝜎"

� Then given 𝑨 =

1 𝑋!
1 𝑋"
⋮ ⋮
1 𝑋#

and 𝒀 =

𝑌!
𝑌"
⋮
𝑌#

the MLE of 𝛽 is

51Henry Chai - 2/9/22

,𝛽 = argmax
'

log 𝑃 𝑌 𝐴, 𝛽

= argmax
'

log exp −
1
2𝜎" 𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀

= argmin
'

𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀 = 𝑨(𝑨 )!𝑨(𝒀



MAP for 
Linear 
Regression 

� If we assume a linear model with additive Gaussian noise 

𝑌 = 𝑋𝛽 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎" → 𝑌 ∼ 𝑁 𝑋𝛽, 𝜎"

and a Gaussian prior on the weights…

𝛽 ~ 𝑁 0,
𝜎"

𝜆
→ 𝑝 𝛽 ∝ exp −

1
2𝜎"

𝜆𝛽(𝛽

� … then, the MAP of 𝛽 is the ridge regression solution!

,𝛽<=> = argmin
'

𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀 + 𝜆𝛽(𝛽

−= 𝑨𝑻𝑨 + 𝜆𝐼$&!
)!𝑨(𝒀
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MAP for 
Linear 
Regression 
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� If we assume a linear model with additive Gaussian noise 

𝑌 = 𝑋𝛽 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎" → 𝑌 ∼ 𝑁 𝑋𝛽, 𝜎"

and a Laplace prior on the weights…

𝛽 ~ Laplace 0,
2𝜎"

𝜆
→ 𝑝 𝛽 ∝ exp −

1
2𝜎"

𝜆 𝛽 !

� … then, the MAP of 𝛽 is the lasso regression solution!

,𝛽<=> = argmin
'

𝑨𝛽 − 𝒀 ( 𝑨𝛽 − 𝒀 + 𝜆 𝛽 !

� No closed form solution but can solve via sub-gradient descent


