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* Given design matrix

1o UKD e X
A= |t Xf_|1 xP o x| g
1 Xn- 1 X7(11) XT(lp)-
Linear * and target vector
Regression '?'
Y=| 7 eRrR
Y

* the goal of linear regression is to find

f = argmin /() = argmin 1 (A —Y)T(AB -Y)
B B n
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1
J(B) =—(Af — Y)T (A8 - Y)

Poll Review: Is A) Convex, quadratic in 8

](,B) convex in B) Non-convex, A may not be positive semi-definite
IB? C) Depends on conditioning (ratio of max:min

. eigenvalues) of A4

D) Convex, AT A is positive semi-definite
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1
J(B) =~ (AB = Y)"(AB - Y)
= %(,BTATA,B —2p"A"Y —Y'Y)

1
Vp/(B) =~ (24" AB —247Y)

Minimizing the

Mean Squared  [ERIE W %(zATAﬁ _24TY) = 0

Error .
ATAp = ATY

B =(ATA)1ATY
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B =(ATA)1ATY

1. Is AT A invertible?

Minimizing the When n > p + 1, AT A is (almost always) full rank and
therefore, invertible

Mean Squared

Error 2. If so, how computationally expensive is inverting AT A?

ATA € RPT1XP+1 5o inverting AT A takes O (p?) time!
Can use gradient descent to speed things up:

BED = O — v,/ (B) = BO — =L (ATAB ~ ATY)
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Linear

Models
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Linear

Models?
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Linear

Models?
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Linear

Models?
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Nonlinear

Models
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Feature

Transforms
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* Given p-dimensional inputs X = [X(l), ...,X(p)], first
compute some transformation of our input, e.g.,

p([x®,x®]) = [(x® - 05)", (X® - 0.5)°]
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Nonlinear

Models
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Nonlinear

Models
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Nonlinear

Models
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General
kt"-order

Transforms
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’ ¢2,2(
’ ¢2,3(

:X(l),X(Z):) — [X(l),X(z),X(l)z,X(l)X(z),X(2)2]

XM, x@1) =

(622 ([X D, X)), x D x 0P x @, x0x@7, 4]

c a4 (XD, X@]) =

[h25([X D, Xx@]), x©* xW7x@ x0*x@* xWx@° x@%

* ¢2 o Maps a 2-dimensional input to a

Q(Q+3)

-dimensional output

* Scales even worse for higher-dimensional inputs...
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Linear

Models
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Nonlinear

Models?

Henry Chai - 2/9/22

20



Feature

Transforms:
Tradeoffs
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Low-Dimensional

High-Dimensional

Input Space Input Space
Training Error High Low
Generalization Good Bad

Overfitting
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Feature

Transforms:
Experiment

Henry Chai - 2/9/22

* Targets are generated by a 1

‘X €ER,YeERandn = 20

0™-order polynomial in

X with additive Gaussian noise:

10
Y = z adXd + e where € ~ N(O;O-Z)
d=0

+ F, = 2" order polynomials

’ ¢1,2(X) — [X'Xz]

* F10 = 10M-order polynomials

. ¢1’10(X) — [X,XZ,X3,X4,X5,X6,X7,X8,X9,X10]
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Poll 1: Which

model do you
think will have
lower training

error?
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‘X €ER,YeERandn = 20

* Targets are generated by a 10™-order polynomial in

X with additive Gaussian noise:

10
Y = z adXd + e where € ~ N(O;O-Z)
d=0

+ F, = 2" order polynomials

’ ¢1,2(X) — [X'Xz]

* F10 = 10M-order polynomials

. ¢1’10(X) — [X,XZ,X3,X4,X5,X6,X7,X8,X9,X10]
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Poll 2: Which
model do you
think will have
lower true

error?
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‘X €ER,YeERandn = 20

* Targets are generated by a 10™-order polynomial in

X with additive Gaussian noise:

10
Y = z adXd + e where € ~ N(O;O-Z)
d=0

+ F, = 2" order polynomials

’ ¢1,2(X) — [X'Xz]

* F10 = 10M-order polynomials

. ¢1’10(X) — [X,XZ,X3,X4,X5,X6,X7,X8,X9,X10]
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Noisy Targets

* 10-dimensional target
function with additive

Gaussian noise
e F, = 2" order polynomial

e Fio = 10%M-order

polynomial
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25



Noisy Targets

* 10-dimensional target
function with additive

Gaussian noise
e F, = 2" order polynomial

e Fio = 10%M-order

polynomial
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Noisy Targets

* 10-dimensional target
function with additive

Gaussian noise
e F, = 2" order polynomial

e Fio = 10%M-order

polynomial
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Feature

Transforms:
Experiment
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* Targets are generated by a 1

‘X€eR,YeRandn =100

0™-order polynomial in

X with additive Gaussian noise:

10
Y = z adXd + e where € ~ N(O;O-Z)
d=0

+ F, = 2" order polynomials

’ ¢1,2(X) — [X'Xz]

* F10 = 10M-order polynomials

. ¢1’10(X) — [X,XZ,X3,X4,X5,X6,X7,X8,X9,X10]
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Regularization
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* Constrain models to prevent them from overfitting

* Learning algorithms are optimization problems and

regularization imposes constraints on the optimization
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Hard

Constraints
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* F10 = 10M-order polynomials

. ¢1’10(X) — [X,XZ,X3,X4,X5,X6,X7,X8,X9,X10]

1 ¢1 Z(Xl)_ -Yl-
- Given A = 1 ¢12(X2) andY = {2 find
1 ¢1 Z(Xn) Yn-

:B [IBO' :Bl' 1821 183' :84» :85' :B6r :87r 188' 1891 :810] that minimizes

1
~(AB ~Y)"(4B ~ V)

* Subject to

B3 =P =Ps=Ps=PB7=PBg =Py =P10=0

33



Hard

Constraints
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* F10 = 10%-order polynomials

. ¢1’10(X) — [X,XZ,X3,X4,X5,X6,X7,X8,X9,X10]

1 ¢12(X1)_ -Yl-
- Given A = 1 ¢12(X2) andY = {2 find
1 ¢1 Z(Xn) Yn-

:B [IBO' lgl' 1821 183' :844 :85' ,36; :87r 188' 1891 :810] that minimizes

%Z (120 Xﬁﬁd>— |

d=0

* Subject to

B3 =P =Ps=Ps=PB7=PBg =Py =P10=0
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Hard

Constraints
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* F1o = 10"™-order polynomials

“r10(X) = [X, X% X3, X%, X°, X6, X7, X8, X%, X19]

1 Py2(X1)] Y,
- Given A = 1 ¢12(X2) andY = lfz find
1 ¢1 Z(Xn) Yn-

:8 [1801 1811 :82' ﬁg’ 134' ,85, :86J ﬁ7’ 188' 189' :BlO] that minimizes

%Z (i Xﬁﬁd>— |

d=0

* Subject to nothing!
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Hard

Constraints
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+ F, = 2" order polynomials

" p12(X) = [X,X?]

1 ¢1,2(X1)_ -Yl-
- Given A = 1 ¢1’2:(X2) andY = {2 find
-1 ¢1,2 (Xn)_ -Yn-

B = [Bo, b1, B2] that minimizes

1
~(AB ~Y)"(4B ~ V)

* Subject to nothing!

36



Soft

Constraints
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1 (X)) - PmXy) K
* Given A = |: : : and ¥ = [ 7],
1 ¢1(Xn) ¢m(X1) -Y.n-

* More generally, ¢ can be any nonlinear transformation,

e.g., exp, log, sin, sqrt, etc...

find S that minimizes

1
~(4B ~¥)"(4B ~ V)

* Subject to:

1813 =5"8 =) pi<C
d=0
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Soft

Constraints
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minimize J(B) = %(A,B -Y)' (4B -Y)

subjectto BT < C

J(B)

' =C
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Soft

Constraints
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minimize J(B) = %(A,B -Y)' (4B -Y)

subjectto BT < C
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Soft

Constraints
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minimize J(B) = %(A,B -Y)' (4B -Y)

subjectto BT < C

. 2 .
V] (ﬁMAP) X — T_l.BMAP

Vg Byar)

A 2 "
Vﬁ] (,BMAP) - = T_lAC,BMAP

R 2 A
Vg] (Buar) + EAC,BMAP =0

A Ac , 4 A
Vg (] (Bmar) + 76 (.BMAP)T:BMAP) =0
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Soft

Constraints:
Solving for By ap
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minimize J(B) = %(A,B -Y)' (4B -Y)
subjectto BT < C

)

1 A
minimize J 4 (B) = - (A —Y)I(AB —-Y) + fﬁTﬁ
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Ridge

Regression
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1 A
minimize /4y (8) =~ (4 = V)" (A —¥) +— "B
2
VeJave(B) = - (A"AB — A"Y + A¢p)

2, . :
- (A APyap —A'Y + AC,BMAP) =0
(ATA + AcLyy1)Buap = ATY

Buap = (ATA + Aclypy ) 1ATY

~~

Adding this positive (A = 0) diagonal

matrix can help if AT A is under-determined!
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—— Target Function
— 10"-Order Hypothesis
o Noisy Samples

Ridge Regression
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* 10-dimensional target function with

additive Gaussian noise

* F1o = 10™-order polynomial

43
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Setting A
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Average True Error over 1000 Trials

0.019

0.018

0.017

0.016

0.015

0.014

0.013

0.012

0.011
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Setting A
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Average True Error over 1000 Trials
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Setting A
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Average True Error over 1000 Trials

0.019

0.018
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0.011
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Setting A
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Average True Error over 1000 Trials
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Other

Regularizers
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J(B) + A pen(B)

p
Ridgeor L2 pen(p) = B3 = ) 53
d=0

p
Lasso or L1 pen(B) = ||Bll1 = ZLBdl
d=0

LO

p
pen(8) = IBllo = ) 1(8q # 0)
d=0

Encourages
small
weights

Encourages
sparsity

Encourages
sparsity
(intractable)
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J(B)

Ridge or L2

Other Regularizers
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J(B)

Lasso or L1

<

LO

J(B)
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M(C)LE for

Linear
Regression
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* If we assume a linear model with additive Gaussian noise

Y = XB + e wheree ~N(0,06%) - Y ~ N(XB,0%)

1 X
1 X,

* Then given A = and Y =

1 X,
B = argmaxlog P(Y|A4, )
B

the MLE of [ is

1
= arg;naxlog exp (— 52 (A —Y)T(AB — Y))

= argénin(A,B -Y)T(AB-Y) =(ATA)1ATY
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* |If we assume a linear model with additive Gaussian noise
Y = XB + e wheree ~N(0,06%) - Y ~ N(XB,0?)
and a Gaussian prior on the weights...

MAP for 52 1
g (32) 9 e~ 27

Linear

Regressmn ° ... then, the MAP of (8 is the ridge regression solution!
Buap = argmin (AB = Y)"(AB —Y) + 18"
B

= (ATA+ AL,,,) ATY
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* |If we assume a linear model with additive Gaussian noise
Y = XB + ewheree ~N(0,06%) > Y ~ N(XB,0%)

and a Laplace prior on the weights...

MAP for

2

2 1
inear B ~ Laplace (0%> - p(B) o exp (—Tﬂunﬁna)

Regressmn ° ... then, the MAP of (8 is the lasso regression solution!

Buyap = arg;nin (A8 —Y)'(AB —Y) + AlBll1

* No closed form solution but can solve via sub-gradient descent

Henry Chai - 2/9/22

53



