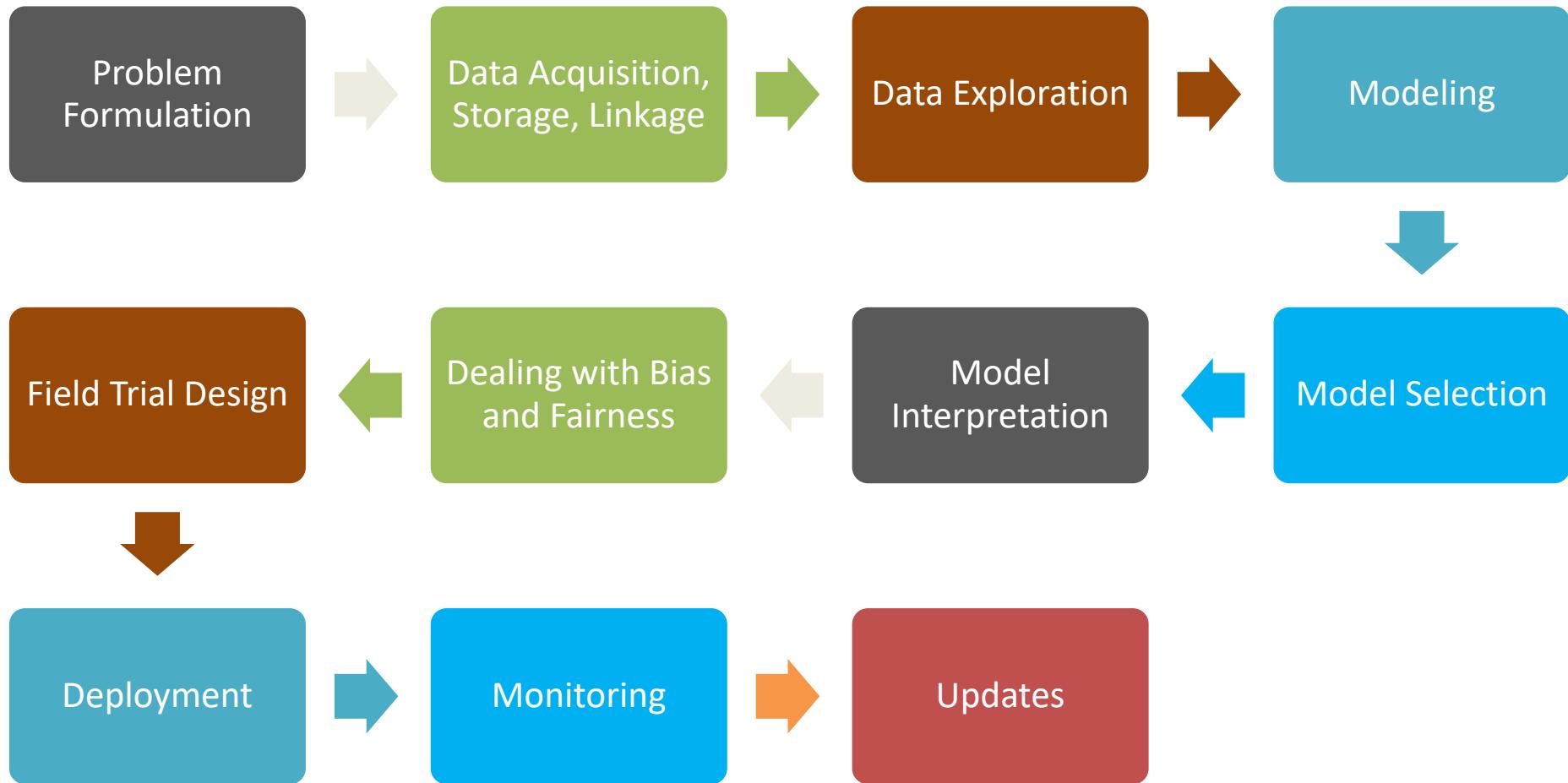


ML Pipelines

Rayid Ghani

Carnegie Mellon University



Things we will cover

- What is an ML Pipeline?
- Why should we build ML pipelines?
- What components should it have?
- Best Practices
- Good Examples

What is an ML Pipeline?

- Supports end-to-end workflow for an ML project/system
- Modular
- Reconfigurable

Why build a pipeline?

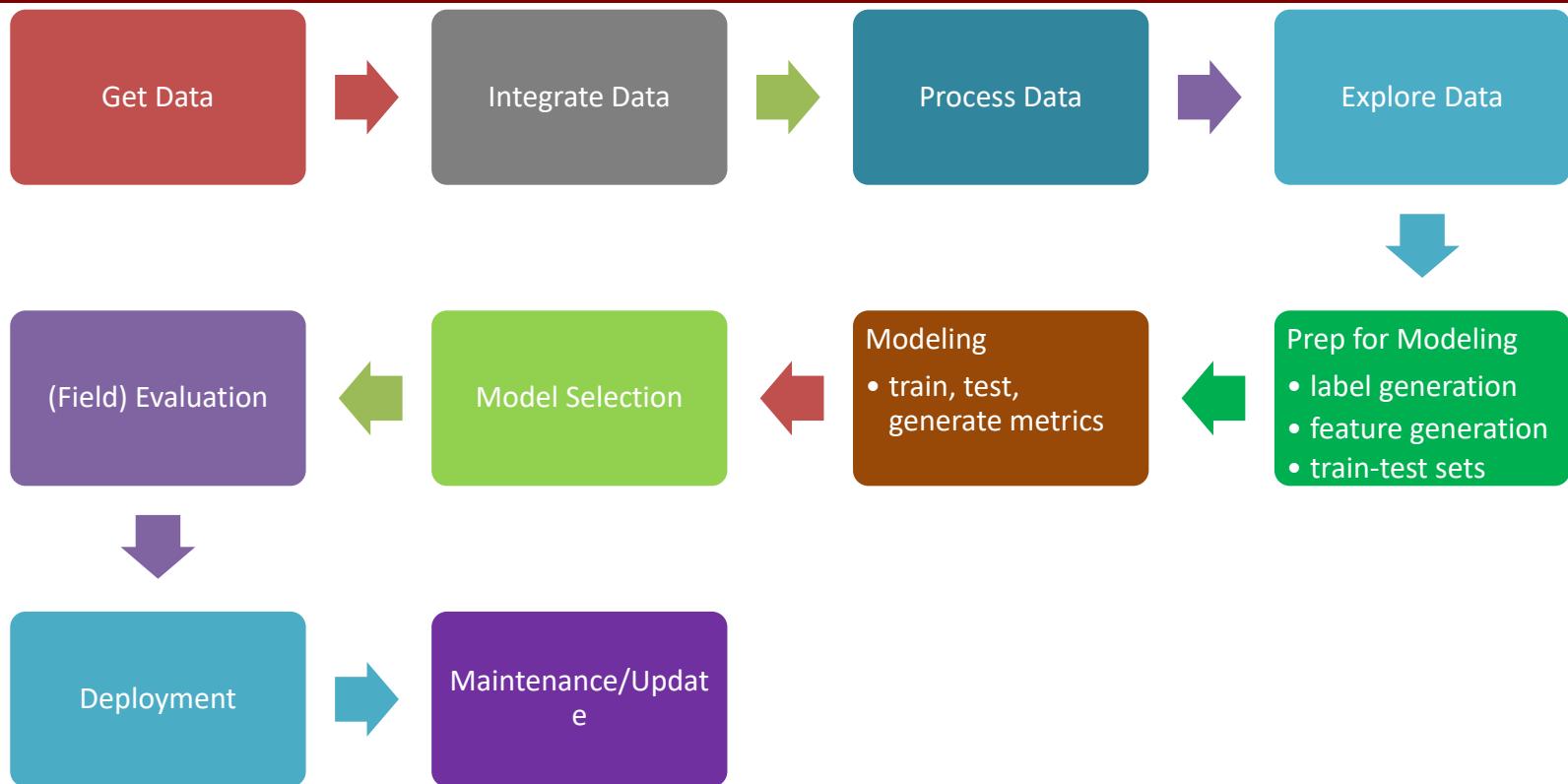
- Reusable across projects
- Test new ideas, components, hypothesis easily
- Reduce bugs/errors
- Allows reproducibility of analysis and results

What makes a pipeline?

- Inputs
- Components
- (Intermediate and final) outputs

Pipeline Flow & Components

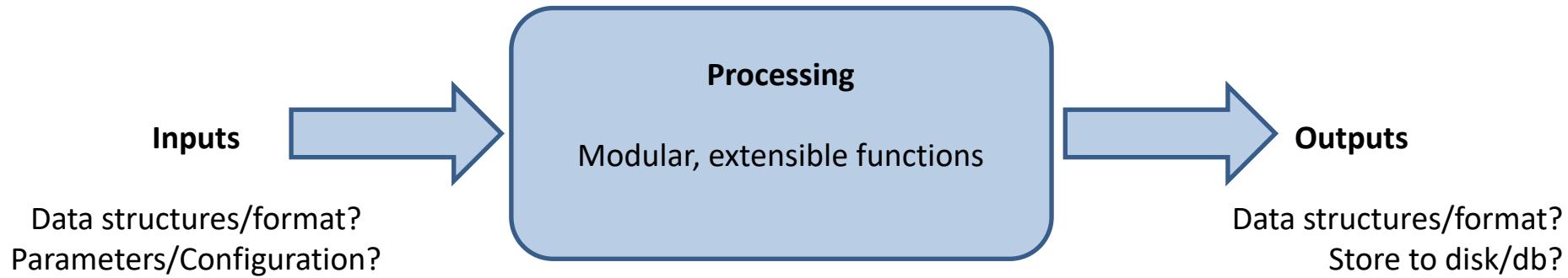
Pipeline Flow



What components does a pipeline have?

- Read/Load Data (from csv, db, api)
- Integrate Data (dedupe, link)
- Process Data (cleaning)
- Explore Data (descriptive stats, correlations, outliers, over time, clustering)
- Modeling Prep
 - Create training and validation (test) sets
 - Missing values (fill/impute, create dummy)
 - Transformations (scale/normalize, log, square, root)
 - Feature Generation
 - Label Generation
 - Define metric(s)
- Modeling
 - Build model(s) on training sets
 - Apply model(s) on test sets
 - Calculate metric(s)
- Model Selection
- Field Trial
- Deploy
- Maintain

Things to keep in mind about each component



Components: Data Acquisition & Integration

- Get Data
 - API, CSV, Database
- Store Data
 - Database
- Integrate Data
 - Record Linkage

Components: Explore and Prepare data

- Data Exploration
 - Distributions
 - Missing Values
 - Correlations
 - Other Patterns
- Pre-Processing
 - Leakage
 - Deal with Missing values
 - Scaling
 - Data errors

Components: Feature Creation

- Data comes with fields or columns (if it's even structured), not features
- Common Features
 - Discretization
 - Transformations
 - Interactions/Conjunctions
 - Disaggregation
 - Aggregations
 - Temporal
 - Spatial
- How are you handling imputation of missing values?

Components: Model Selection

- Select pool of methods applicable for task: what model types will you use?
- Select space of hyperparameters to explore for each model type

Components: Validation

- Using historical data
 - Methodology
 - Metric
- Field Experiment
 - Methodology
 - Metric

Deployment

- Model monitoring
- Re-training
 - How often?
 - Re-select methods?
- Scoring

What types of variations do you want to test using your pipeline?

- Different models
- Model parameters
- Different Labels/Outcomes
- Different Deployment Settings
- Different Feature (Groups)
- Different Metrics

Best Practices

- Draw a diagram of the pipeline:
 - What function runs each step? What are the inputs? What are the outputs?
- Config files (yaml, json, py)
- Make each step modular and extensible so it can easily be re-used
- Build a **simple**, end-to-end version first, then add more functionality
- Think about how you'll store outputs:
 - Store models as pickles
 - Store predictions in databases
 - Store evaluation metrics in databases
 - [Sample results schema](#)

Useful Resources

- [Data Science Project Scoping Guide](#)
- Open Source Data Science Tools
 - [Triage](#): ML Toolkit
 - [Aequitas](#): Bias Audit Tool
 - Code for projects: www.github.com/dssg

Rayid Ghani

Carnegie Mellon University

rayid@cmu.edu