10-315: Introduction to Machine Learning Lecture 7 – Regularization

Henry Chai

2/9/22

Linear Regression

• Given *design matrix*

$$\boldsymbol{A} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} = \begin{bmatrix} 1 & X_1^{(1)} & \cdots & X_1^{(p)} \\ 1 & X_2^{(1)} & \cdots & X_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_n^{(1)} & \cdots & X_n^{(p)} \end{bmatrix} \in \mathbb{R}^{n \times p+1}$$

• and target vector

$$\boldsymbol{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n$$

the goal of linear regression is to find

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} J(\beta) = \underset{\beta}{\operatorname{argmin}} \frac{1}{n} (A\beta - Y)^T (A\beta - Y)$$

Poll Review: Is $J(\beta)$ convex in β ?

$$J(\beta) = \frac{1}{n} (\boldsymbol{A}\beta - \boldsymbol{Y})^T (\boldsymbol{A}\beta - \boldsymbol{Y})$$

A) Convex, quadratic in β
B) Non-convex, A may not be positive semi-definite
C) Depends on conditioning (ratio of max:min eigenvalues) of A^TA
D) Convex, A^TA is positive semi-definite

Minimizing the Mean Squared Error

$$J(\beta) = \frac{1}{n} (A\beta - Y)^{T} (A\beta - Y)$$

$$J(\beta) = \frac{1}{n} (\beta^{T} A^{T} A \beta - 2\beta^{T} A^{T} Y + Y^{T} Y)$$

$$T_{p} J(\beta) = \frac{1}{n} (2A^{T} A \beta - 2A^{T} Y)$$

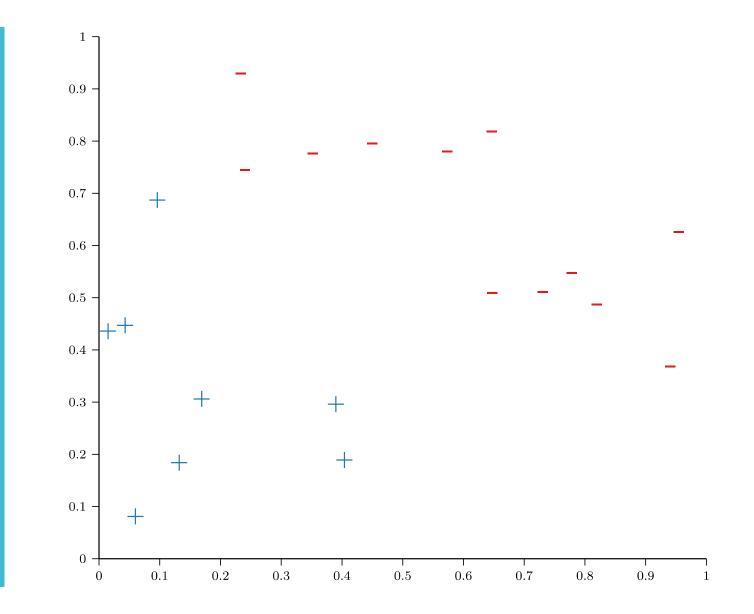
$$\frac{1}{n} (2A^{T} A \beta - 2A^{T} Y) = O$$

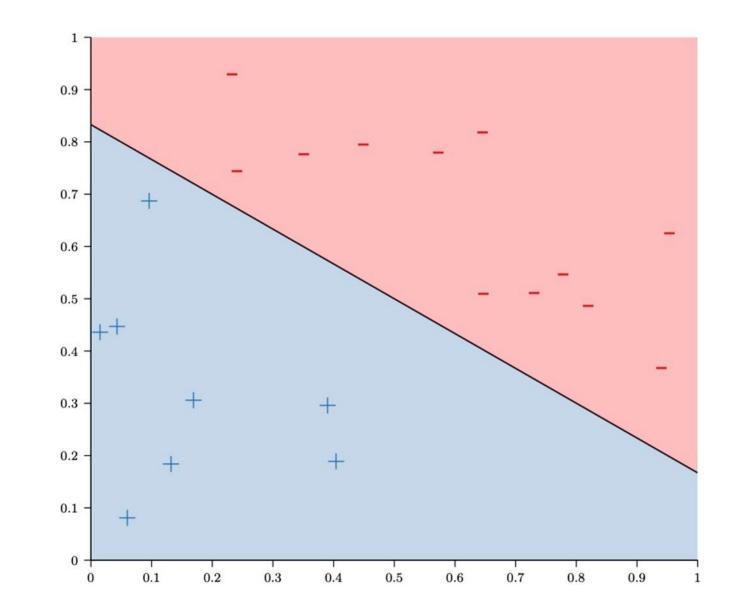
$$A^{T} A \beta - A^{T} Y = O$$

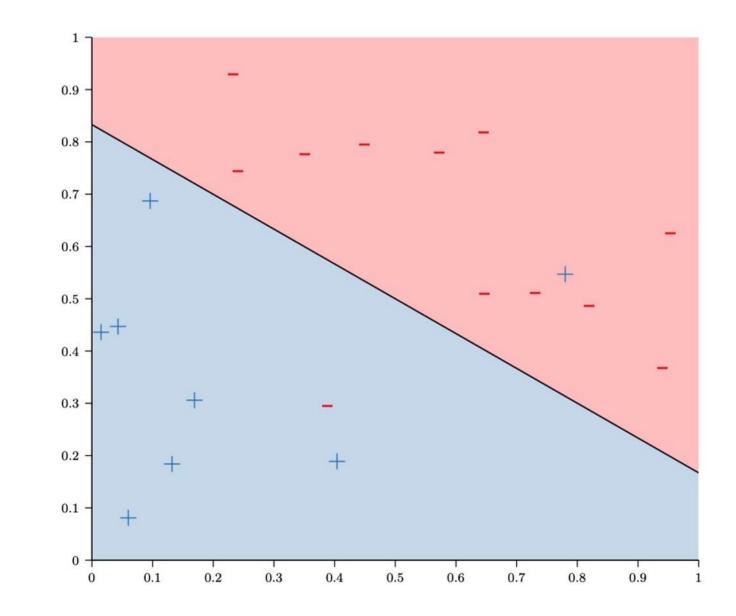
$$\beta^{3} = (A^{T} A)^{-1} A^{T} Y$$
ordinary least squares or OLS

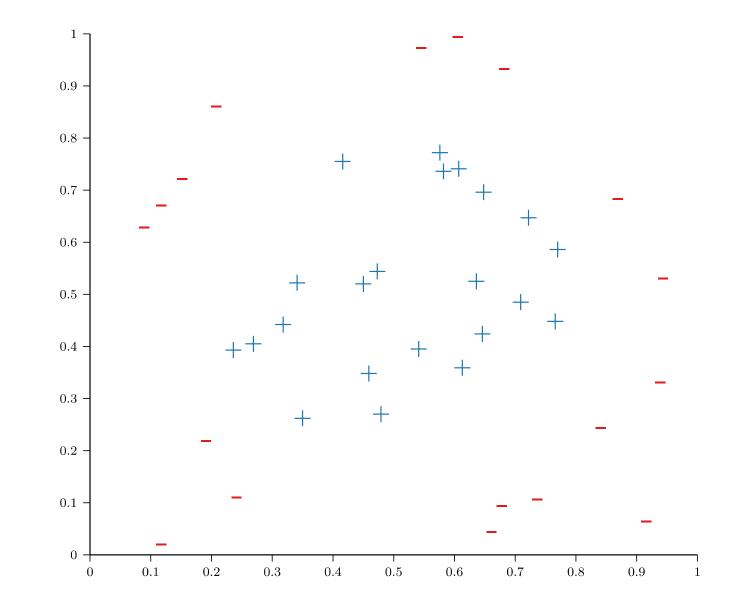
Minimizing the Mean Squared Error

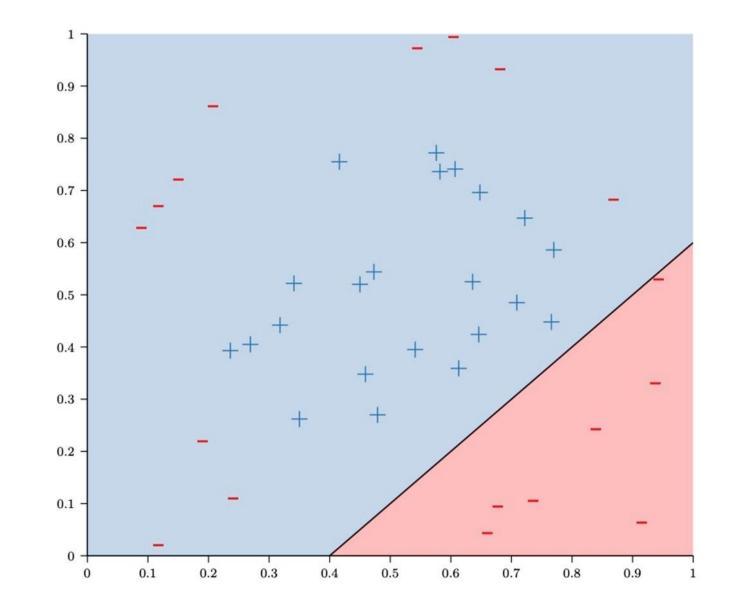
- $\hat{\beta} = \left(\boldsymbol{A}^{T}\boldsymbol{A}\right)^{-1}\boldsymbol{A}^{T}\boldsymbol{Y}$
- 1. Is A^T A invertible?
 In practice, almost always
 if n >> p
- 2. If so, how computationally expensive is inverting $A^{T}A$? $A^{T}A \in R^{(P+1)\times(P+1)} O(P^{3})$ $\beta^{t+1} \leftarrow \beta^{t} - \eta \nabla_{\beta} J(\beta) = \beta^{t} - \frac{2\eta}{\eta} (A^{T}A\beta)$ $-A^{T}\gamma$

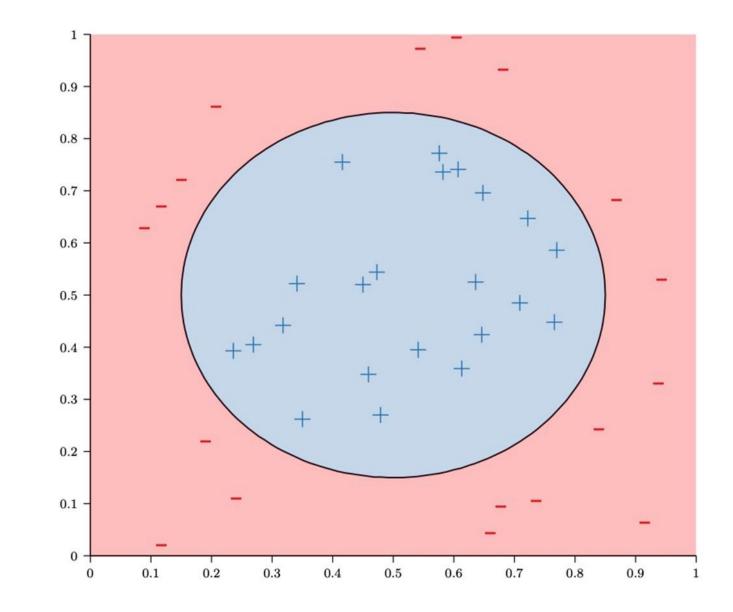








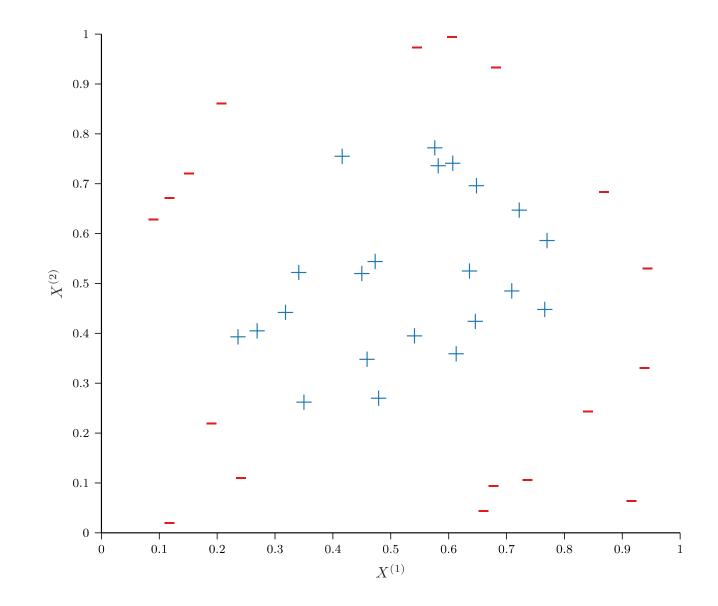


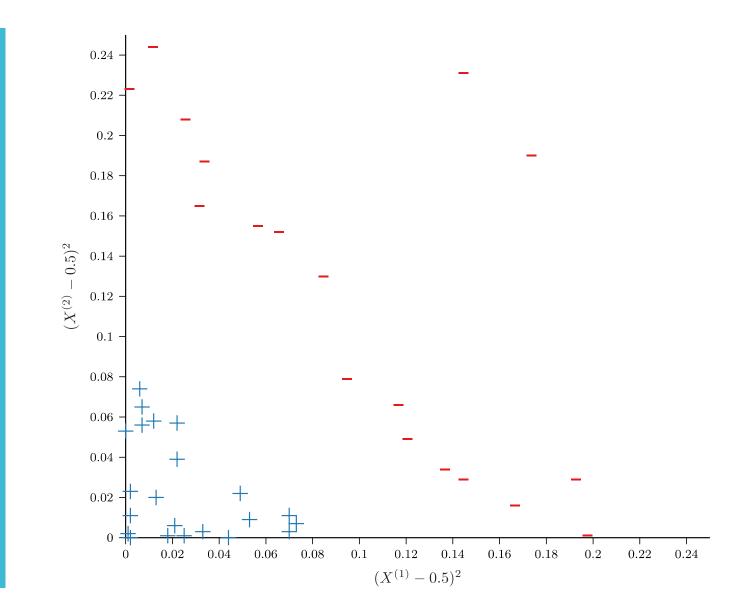


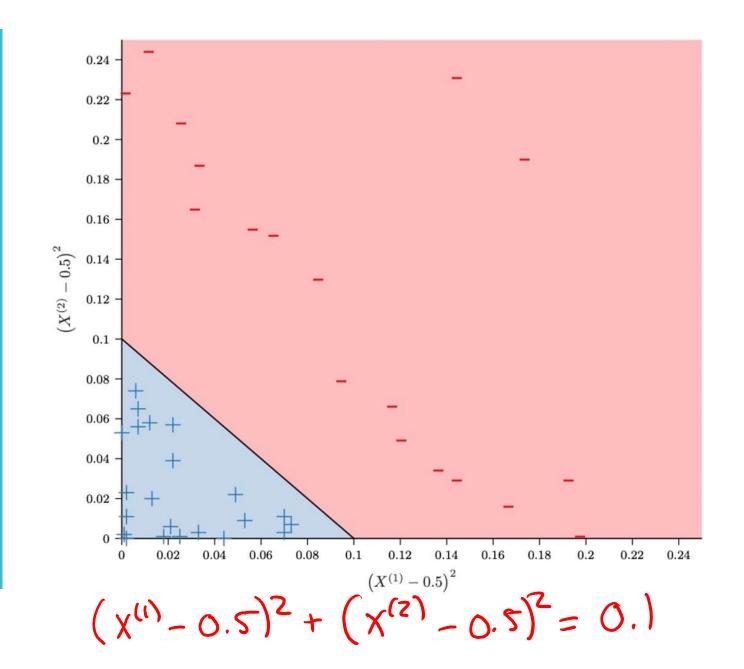
Feature Transforms

• Given *p*-dimensional inputs $X = [X^{(1)}, ..., X^{(p)}]$, first compute some transformation of our input, e.g.,

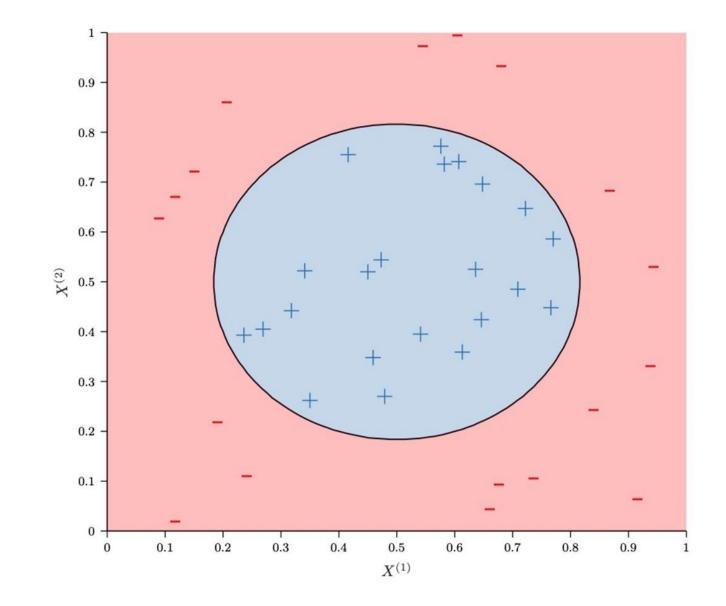
$$\phi([X^{(1)}, X^{(2)}]) = [(X^{(1)} - 0.5)^2, (X^{(2)} - 0.5)^2]$$







15

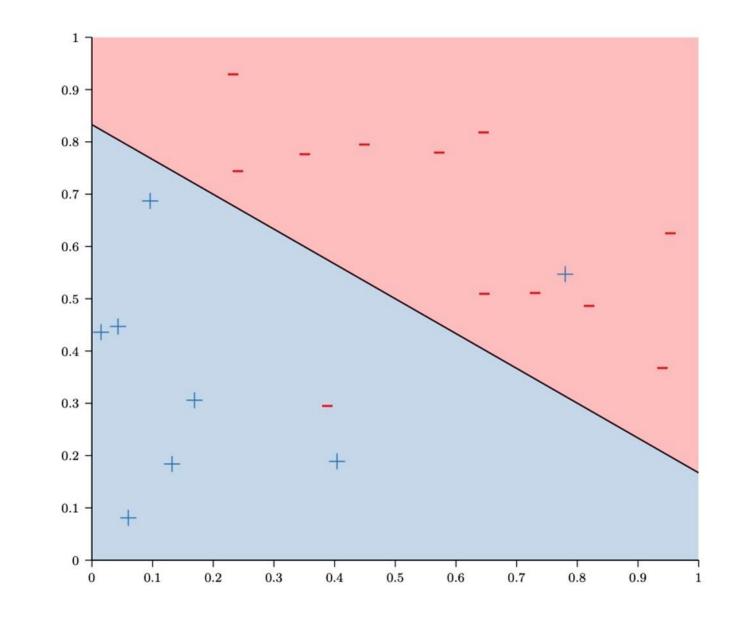


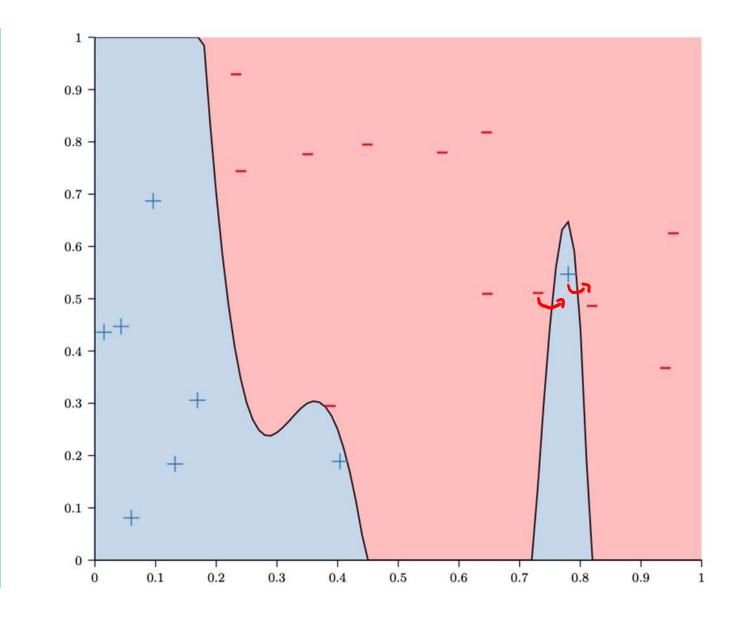
General k^{th} -order Transforms

• $\phi_{2,2}([X^{(1)}, X^{(2)}]) = [X^{(1)}, X^{(2)}, X^{(1)^2}, X^{(1)}X^{(2)}, X^{(2)^2}]$ • $\phi_{2,3}([X^{(1)}, X^{(2)}]) =$ $[\phi_{2,2}([X^{(1)}, X^{(2)}]), X^{(1)^3}, X^{(1)^2}X^{(2)}, X^{(1)}X^{(2)^2}, X^{(2)^3}]$ • $\phi_{2,4}([X^{(1)}, X^{(2)}]) =$ $[\phi_{23}([X^{(1)}, X^{(2)}]), X^{(1)^4}, X^{(1)^3}X^{(2)}, X^{(1)^2}X^{(2)^2}, X^{(1)}X^{(2)^3}, X^{(2)^4}]$ • $\phi_{2,Q}$ maps a 2-dimensional input to a $\frac{Q(Q+3)}{2}$ -dimensional output

- Coolee even were for bisher dimensional inputs

• Scales even worse for higher-dimensional inputs...





Feature Transforms: Tradeoffs

	Low-Dimensional Input Space	High-Dimensional Input Space
Training Error	High	Low
Generalization	Good	Bad
Overfitting		

Feature Transforms: Experiment

• $X \in \mathbb{R}, Y \in \mathbb{R}$ and n = 20

Targets are generated by a 10th-order polynomial in
 X with additive Gaussian noise:

$$Y = \sum_{d=0}^{10} a_d X^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

• $\mathcal{F}_2 = 2^{nd}$ -order polynomials

• $\phi_{1,2}(X) = [X, X^2]$

- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomials
 - $\phi_{1,10}(X) = [X, X^2, X^3, X^4, X^5, X^6, X^7, X^8, X^9, X^{10}]$

Poll 1: Which model do you think will have lower *training* error?

> A. \mathcal{F}_2 B. \mathcal{F}_{10}

• $X \in \mathbb{R}, Y \in \mathbb{R}$ and n = 20

- Targets are generated by a $10^{\rm th}$ -order polynomial in
 - X with additive Gaussian noise:

$$Y = \sum_{d=0}^{10} a_d X^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

• $\mathcal{F}_2 = 2^{nd}$ -order polynomials

• $\phi_{1,2}(X) = [X, X^2]$

- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomials
 - $\phi_{1,10}(X) = [X, X^2, X^3, X^4, X^5, X^6, X^7, X^8, X^9, X^{10}]$

Poll 2: Which model do you think will have lower *true* error?

> A. \mathcal{F}_2 B. \mathcal{F}_{10}

• $X \in \mathbb{R}, Y \in \mathbb{R}$ and n = 20

- Targets are generated by a $10^{\rm th}$ -order polynomial in
 - X with additive Gaussian noise:

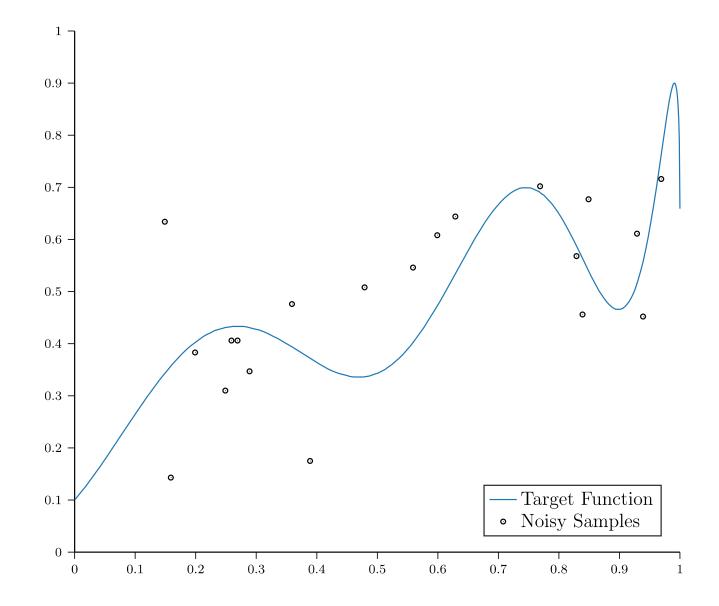
$$Y = \sum_{d=0}^{10} a_d X^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

• $\mathcal{F}_2 = 2^{nd}$ -order polynomials

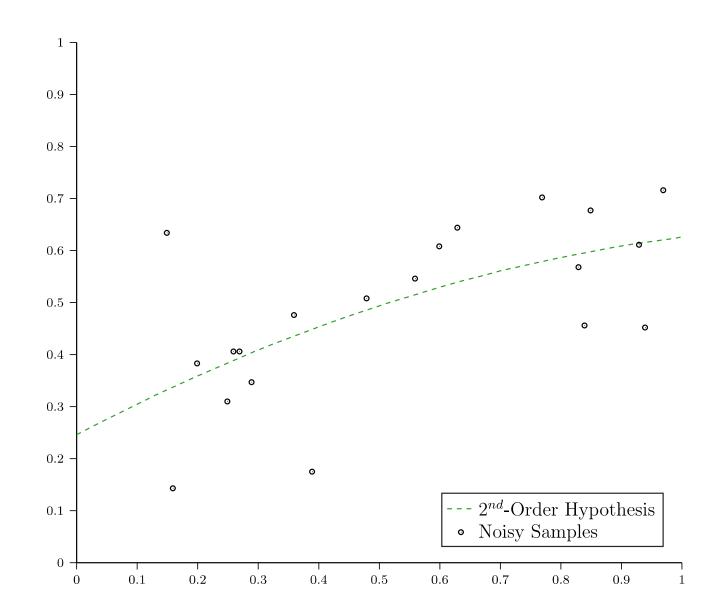
• $\phi_{1,2}(X) = [X, X^2]$

- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomials
 - $\phi_{1,10}(X) = [X, X^2, X^3, X^4, X^5, X^6, X^7, X^8, X^9, X^{10}]$

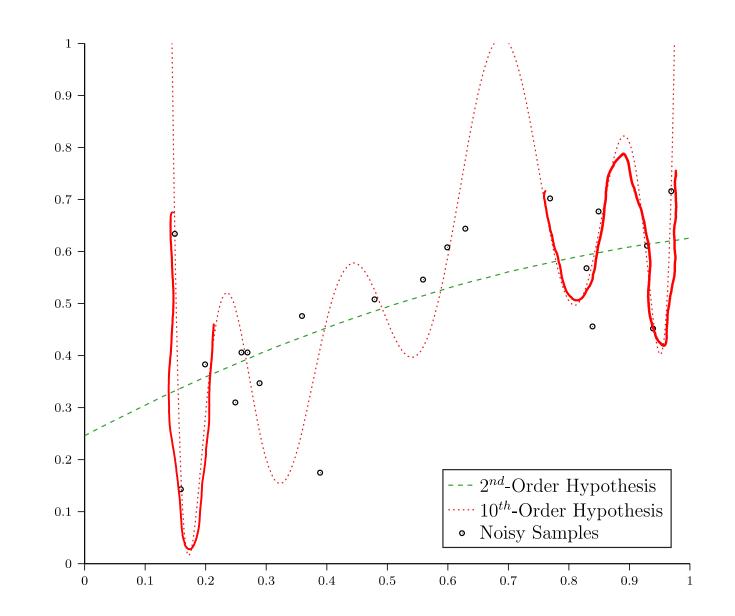
- 10-dimensional target function with additive Gaussian noise
- $\mathcal{F}_2 = 2^{nd}$ -order polynomial
- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomial



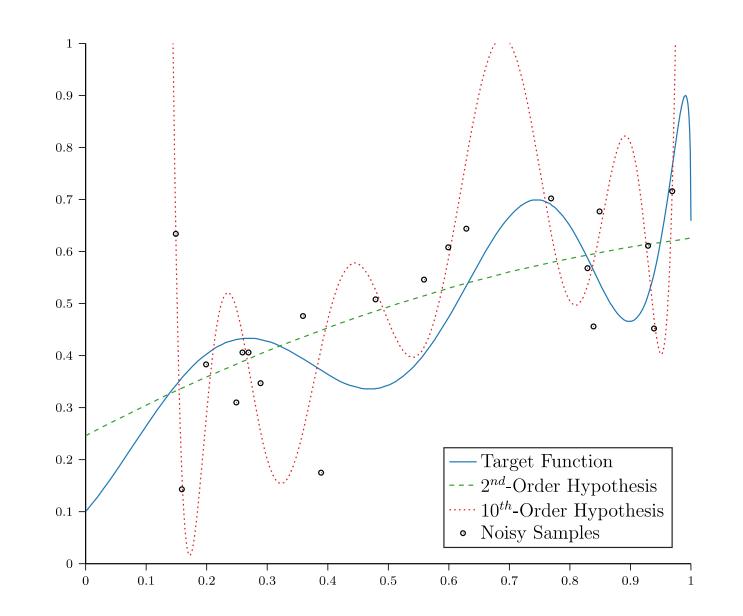
- 10-dimensional target function with additive Gaussian noise
- $\mathcal{F}_2 = 2^{nd}$ -order polynomial
- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomial

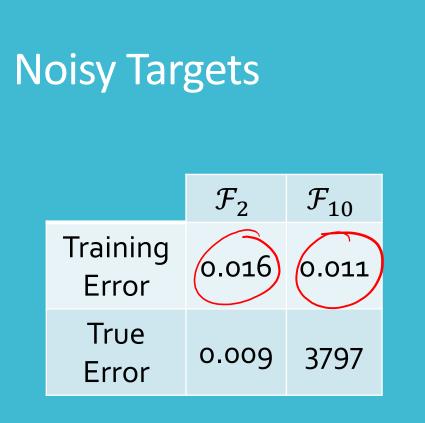


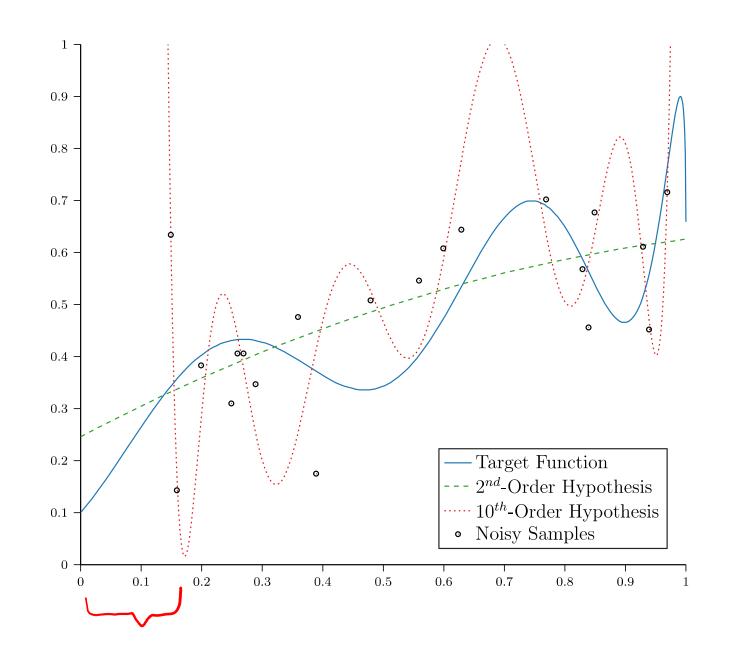
- 10-dimensional target function with additive Gaussian noise
- $\mathcal{F}_2 = 2^{nd}$ -order polynomial
- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomial



- 10-dimensional target function with additive Gaussian noise
- $\mathcal{F}_2 = 2^{nd}$ -order polynomial
- $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomial







Regularization

Constrain models to prevent them from overfitting

• Learning algorithms are optimization problems and regularization imposes constraints on the optimization

• $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomials • $\phi_{1,10}(X) = [X, X^2, X^3, X^4, X^5, X^6, X^7, X^8, X^9, X^{10}]$ • Given $A = \begin{vmatrix} 1 & \phi_{1,2}(X_1) \\ 1 & \phi_{1,2}(X_2) \\ \vdots & \vdots \\ 1 & \phi_{1,2}(X) \end{vmatrix}$ and $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$ find $\beta = [\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_8, \beta_9, \beta_{10}]$ that minimizes 1

$$\frac{1}{n}(\boldsymbol{A}\boldsymbol{\beta}-\boldsymbol{Y})^{T}(\boldsymbol{A}\boldsymbol{\beta}-\boldsymbol{Y})$$

Subject to

 $\beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = 0$

• $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomials • $\phi_{1,10}(X) = [X, X^2, X^3, X^4, X^5, X^6, X^7, X^8, X^9, X^{10}]$ • Given $A = \begin{bmatrix} 1 & \phi_{1,2}(X_1) \\ 1 & \phi_{1,2}(X_2) \\ \vdots & \vdots \\ 1 & \phi_{1,2}(X_2) \end{bmatrix}$ and $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y \end{bmatrix}$ find $\beta = [\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_8, \beta_9, \beta_{10}]$ that minimizes $\frac{1}{n}\sum_{i=1}^{n} \left(\left(\sum_{d=0}^{10} X_i^{(d)} \beta_d \right) - Y_i \right)$

Subject to

 $\beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = 0$

• $\mathcal{F}_{10} = 10^{\text{th}}$ -order polynomials • $\phi_{1,10}(X) = [X, X^2, X^3, X^4, X^5, X^6, X^7, X^8, X^9, X^{10}]$ • Given $A = \begin{bmatrix} 1 & \phi_{1,2}(X_1) \\ 1 & \phi_{1,2}(X_2) \\ \vdots & \vdots \\ 1 & \phi_{1,2}(X_1) \end{bmatrix}$ and $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y \end{bmatrix}$ find $\beta = [\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_8, \beta_9, \beta_{10}]$ that minimizes $\frac{1}{n}\sum_{i=1}^{n} \left(\left(\sum_{d=0}^{2} X_{i}^{(d)} \beta_{d} \right) - Y_{i} \right)$ Subject to nothing!

• $\mathcal{F}_2 = 2^{nd}$ -order polynomials • $\phi_{1,2}(X) = [X, X^2]$ • Given $A = \begin{bmatrix} 1 & \phi_{1,2}(X_1) \\ 1 & \phi_{1,2}(X_2) \\ \vdots & \vdots \\ 1 & \phi_{-1}(X_1) \end{bmatrix}$ and $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$ find $\beta = [\beta_0, \beta_1, \beta_2]$ that minimizes $\frac{1}{m}(\boldsymbol{A}\boldsymbol{\beta}-\boldsymbol{Y})^{T}(\boldsymbol{A}\boldsymbol{\beta}-\boldsymbol{Y})$

Subject to nothing!

Soft Constraints

More generally, φ can be any nonlinear transformation,
 e.g., exp, log, sin, sqrt, etc...

• Given
$$A = \begin{bmatrix} 1 & \phi_1(X_1) & \cdots & \phi_m(X_1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(X_n) & \cdots & \phi_m(X_1) \end{bmatrix}$$
 and $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$,
find β that minimizes

$$\frac{1}{n}(\boldsymbol{A}\boldsymbol{\beta}-\boldsymbol{Y})^{T}(\boldsymbol{A}\boldsymbol{\beta}-\boldsymbol{Y})$$

• Subject to:

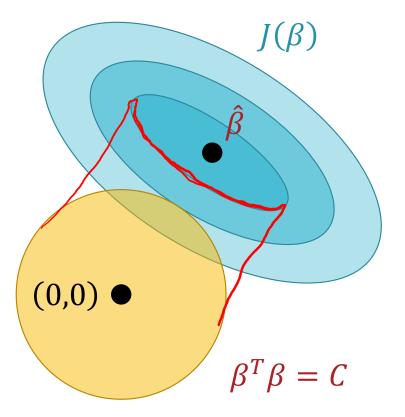
$$\|\beta\|_{2}^{2} = \beta^{T}\beta = \sum_{d=0}^{m} \beta_{d}^{2} \le C$$

EVZ J

Soft Constraints

minimize
$$J(\beta) = \frac{1}{n} (A\beta - Y)^T (A\beta - Y)$$

subject to $\beta^T \beta \leq C$ $\beta_1^2 + \beta_2^2 \leq C$

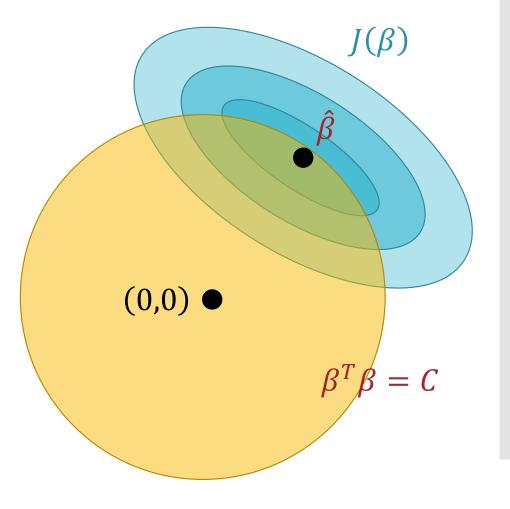


Soft Constraints

minimize
$$J(\beta) = \frac{1}{n} (A\beta - Y)^T (A\beta - Y)$$

subject to $\beta^T \beta \leq C$

p is optimal



Soft Constraints

minimize
$$J(\beta) = \frac{1}{n} (A\beta - Y)^T (A\beta - Y)$$

subject to $\beta^T \beta \leq C$

$$\begin{aligned} \nabla_{p} J(\hat{\beta}_{MAP}) & \propto -\frac{2}{n} \hat{\beta}_{MAP} \\ \nabla_{p} J(\hat{\beta}_{MAP}) &= -\frac{2}{n} \lambda_{c} \hat{\beta}_{MAP} \\ & \psi h w c \quad \lambda_{c} \geq 0 \\ \nabla_{p} J(\hat{\beta}_{MAP}) &+ \frac{2}{n} \lambda_{c} \hat{\beta}_{MAP} = 0 \\ \nabla_{p} J(\hat{\beta}_{MAP}) &+ \frac{2}{n} \lambda_{c} \hat{\beta}_{MAP} = 0 \\ \nabla_{p} J(\hat{\beta}_{MAP}) &+ \frac{1}{n} \lambda_{c} \hat{\beta}_{MAP} \hat{\beta}_{MPP} = 0 \end{aligned}$$

 $J(\beta)$

Soft Constraints: Solving for $\hat{\beta}_{MAP}$ minimize $J(\beta) = \frac{1}{n} (A\beta - Y)^T (A\beta - Y)$

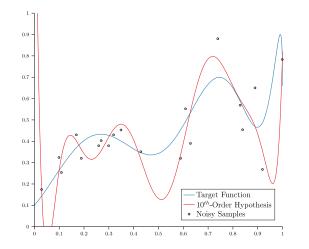
subject to $\beta^T \beta \leq C$

minimize $J_{AUG}(\beta) = \frac{1}{n} (A\beta - Y)^T (A\beta - Y) + \frac{\lambda_C}{n} \beta^T \beta$

Ridge Regression

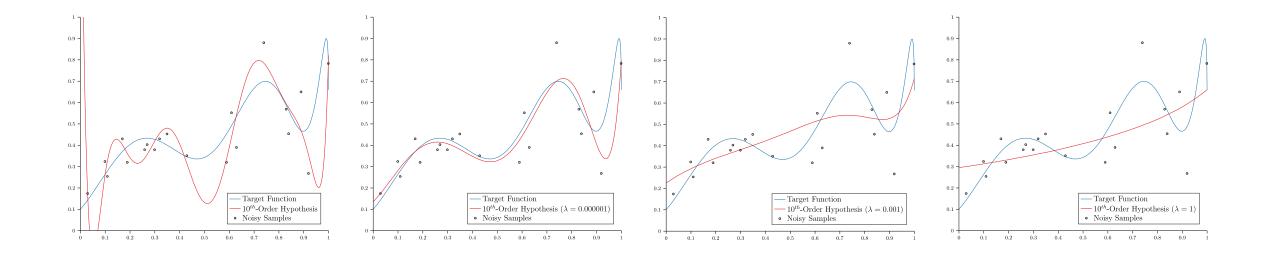
minimize
$$J_{AUG}(\beta) = \frac{1}{n}(A\beta - Y)^{T}(A\beta - Y) + \frac{\lambda_{c}}{n}\beta^{T}\beta$$

 $\nabla_{\beta}(J_{AUG}(\beta)) = \frac{1}{n}(2A^{T}A\beta - 2A^{T}Y + 2\lambda_{c}\beta)$
 $=) \frac{1}{n}(2A^{T}A\hat{\beta}_{MAP} - 2A^{T}Y + 2\lambda_{c}\hat{\beta}_{MAP}) = 0$
 $A^{T}A\hat{\beta}_{MAP} + \lambda_{c}\hat{\beta}_{MAP} = A^{T}Y$
 $(A^{T}A + \lambda_{c}I_{PH})\hat{\beta}_{MAP} = A^{T}Y$
 $\hat{\beta}_{MAP} = (A^{T}A + \lambda_{c}I_{PM})^{-1}A^{T}Y$
when $\lambda_{c} \ge 0$, thus helps make
 $A^{T}A$ invertible

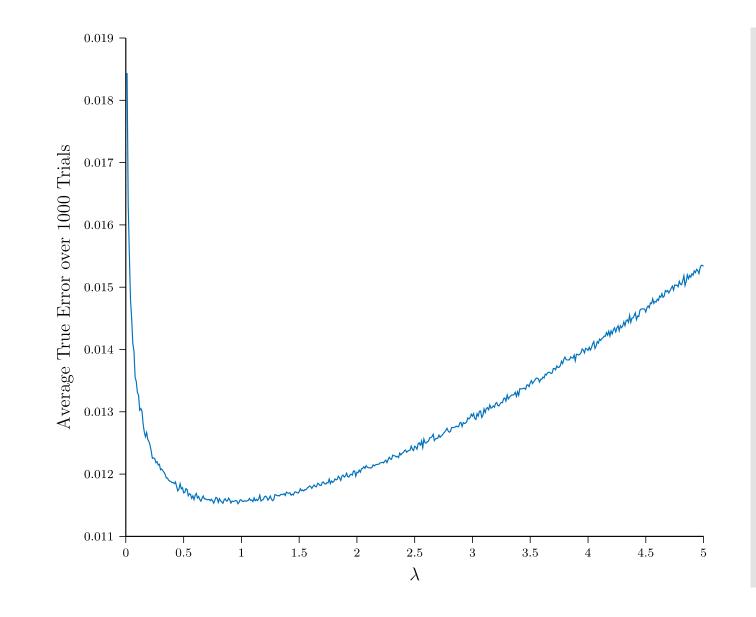


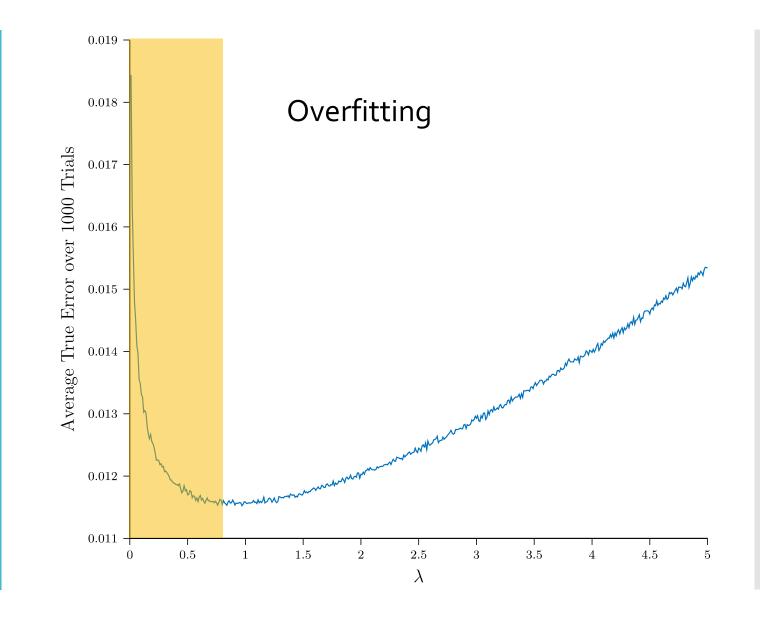
Ridge Regression

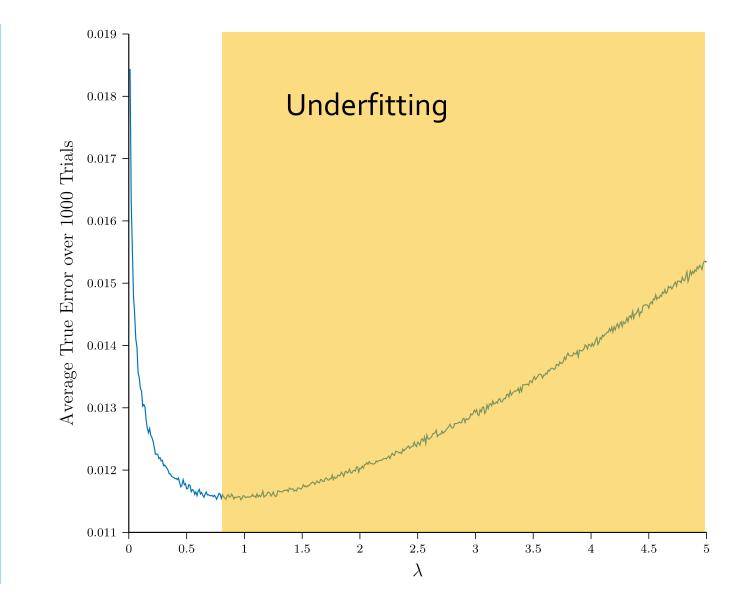
• 10-dimensional target function with additive Gaussian noise $\cdot \mathcal{F}_{10} = 10^{\rm th} \text{-order polynomial}$

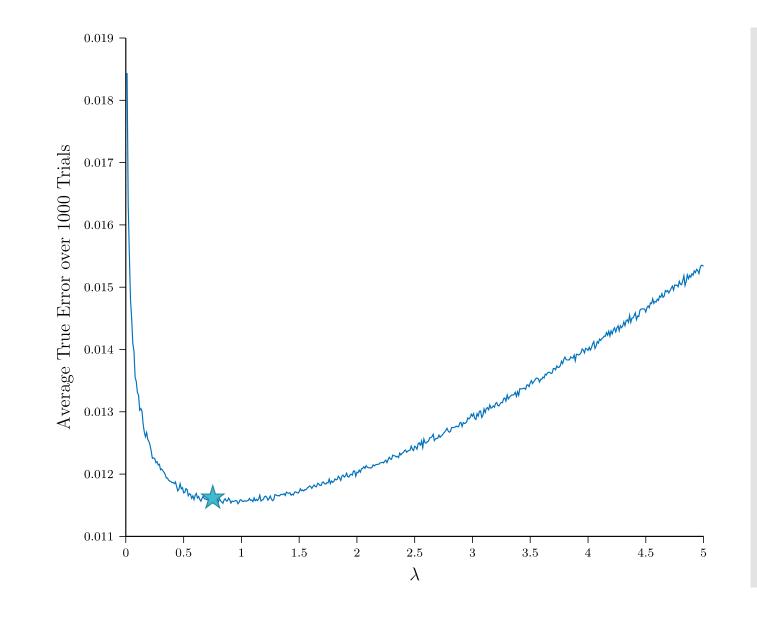


$$\lambda_c = 0$$
Ridge RegressionTrue
Error0.059Overfit



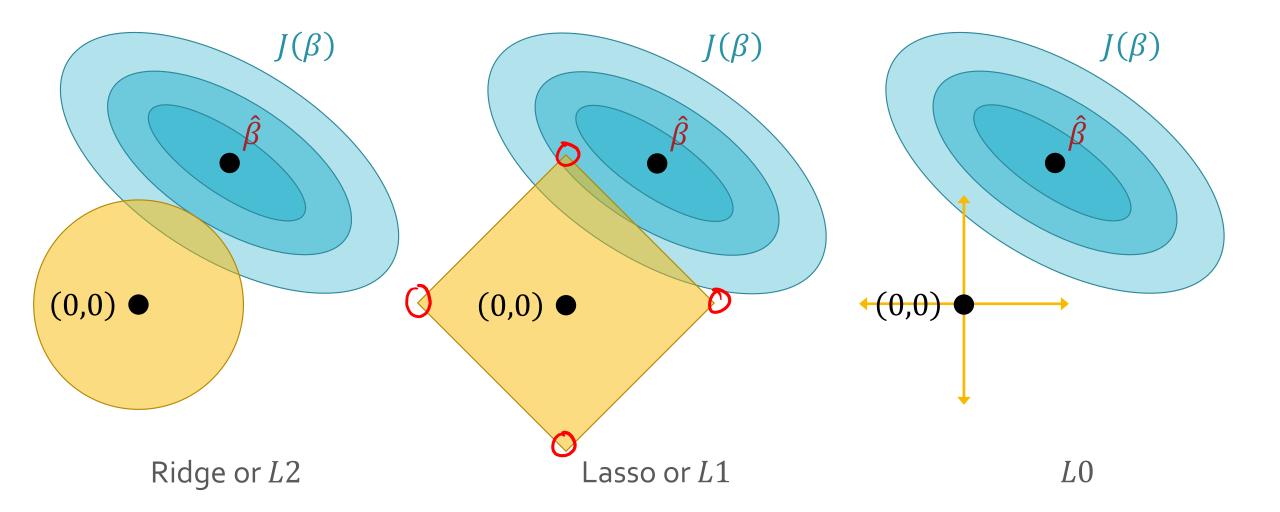






Other Regularizers

$J(\beta) + \lambda pen(\beta)$		
Ridge or <i>L</i> 2	$pen(\beta) = \ \beta\ _2^2 = \sum_{d=0}^p \beta_d^2$	Encourages small weights
Lasso or <i>L</i> 1	$pen(\beta) = \ \beta\ _1 = \sum_{d=0}^p \beta_d $	Encourages sparsity
LO Do not use	$pen(\beta) = \ \beta\ _0 = \sum_{d=0}^p \mathbb{1}(\beta_d \neq 0)$	Encourages sparsity (intractable)



Other Regularizers

M(C)LE for Linear Regression

 If we assume a linear model with additive Gaussian noise $Y = X\beta + \epsilon$ where $\epsilon \sim N(0, \sigma^2) \rightarrow Y \sim N(X\beta, \sigma^2)$ • Then given $A = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$ and $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$ the MLE of β is $\hat{\beta} = \underset{\beta}{\operatorname{argmax}} \log P(Y|A, \beta)$ $\mathcal{N}(\mathcal{Y}, \sigma^2) = \frac{1}{\sqrt{2\sigma^2}}$ $= \underset{\beta}{\operatorname{argmax}} \log \exp \left(-\frac{1}{2\sigma^2} (A\beta - Y)^T (A\beta - Y) \right)^{-1}$ $= \underset{\beta}{\operatorname{argmin}} (\boldsymbol{A}\beta - \boldsymbol{Y})^{T} (\boldsymbol{A}\beta - \boldsymbol{Y}) = (\boldsymbol{A}^{T}\boldsymbol{A})^{-1} \boldsymbol{A}^{T}\boldsymbol{Y}$

Henry Chai - 2/9/22

MAP for Linear Regression • If we assume a linear model with additive Gaussian noise $Y = X\beta + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2) \rightarrow Y \sim N(X\beta, \sigma^2)$

and a Gaussian prior on the weights...

$$\beta \sim N\left(0, \frac{\sigma^2}{\lambda}\right) \to p(\beta) \propto \exp\left(-\frac{1}{2\sigma^2}\left(\lambda\beta^T\beta\right)\right)$$

• ... then, the MAP of β is the ridge regression solution!

$$\hat{\beta}_{MAP} = \underset{\beta}{\operatorname{argmin}} (A\beta - Y)^{T} (A\beta - Y) + \lambda \beta^{T} \beta$$
$$= (A^{T}A + \lambda I_{p+1})^{-1} A^{T} Y$$

MAP for Linear Regression • If we assume a linear model with additive Gaussian noise $Y = X\beta + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2) \rightarrow Y \sim N(X\beta, \sigma^2)$

and a Laplace prior on the weights...

$$\beta \sim \text{Laplace}\left(0, \frac{2\sigma^2}{\lambda}\right) \rightarrow p(\beta) \propto \exp\left(-\frac{1}{2\sigma^2}(\lambda \|\beta\|_1)\right)$$

• ... then, the MAP of β is the lasso regression solution!

$$\hat{\beta}_{MAP} = \underset{\beta}{\operatorname{argmin}} (\boldsymbol{A\beta} - \boldsymbol{Y})^T (\boldsymbol{A\beta} - \boldsymbol{Y}) + \lambda \|\beta\|_1$$

• No closed form solution but can solve via sub-gradient descent