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Linear 
Regression

 Given design matrix

𝑨 =

1 𝑋1
1 𝑋2
⋮ ⋮
1 𝑋𝑛

=

1 𝑋1
1

⋯ 𝑋1
𝑝

1 𝑋2
1

⋯ 𝑋2
𝑝

⋮ ⋮ ⋱ ⋮

1 𝑋𝑛
1

⋯ 𝑋𝑛
𝑝

∈ ℝ𝑛×𝑝+1

 and target vector

𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

∈ ℝ𝑛

 the goal of linear regression is to find 

መ𝛽 = argmin
𝛽

𝐽 𝛽 = argmin
𝛽

1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀
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Poll Review: Is 
𝐽 𝛽 convex in 
𝛽?
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𝐽 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

A) Convex, quadratic in 𝛽

B) Non-convex, 𝑨 may not be positive semi-definite

C) Depends on conditioning (ratio of max:min

eigenvalues) of 𝑨𝑇𝑨

D) Convex, 𝑨𝑇𝑨 is positive semi-definite



Minimizing the 
Mean Squared 
Error
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𝐽 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

∇𝛽𝐽 𝛽 =
1

𝑛
2𝑨𝑇𝑨𝛽 − 2𝑨𝑇𝒀

𝐽 𝛽 =
1

𝑛
𝛽𝑇𝑨𝑇𝑨𝛽 − 2𝛽𝑇𝑨𝑇𝒀 − 𝒀𝑇𝒀

∇𝛽𝐽 መ𝛽 =
1

𝑛
2𝑨𝑇𝑨 መ𝛽 − 2𝑨𝑇𝒀 = 0

𝑨𝑇𝑨 መ𝛽 = 𝑨𝑇𝒀

መ𝛽 = 𝑨𝑇𝑨
−1
𝑨𝑇𝒀



Minimizing the 
Mean Squared 
Error
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መ𝛽 = 𝑨𝑇𝑨
−1
𝑨𝑇𝒀

1. Is 𝑨𝑇𝑨 invertible?

When 𝑛 ≫ 𝑝 + 1, 𝑨𝑇𝑨 is (almost always) full rank and 
therefore, invertible

2. If so, how computationally expensive is inverting 𝑨𝑇𝑨?

𝑨𝑇𝑨 ∈ 𝑅𝑝+1×𝑝+1 so inverting 𝑨𝑇𝑨 takes 𝑂 𝑝3 time! 

Can use gradient descent to  speed things up:

𝛽 𝑡+1 = 𝛽 𝑡 − 𝜂∇𝛽𝐽 𝛽 = 𝛽 𝑡 −
2𝜂

𝑛
𝑨𝑇𝑨𝛽 − 𝑨𝑇𝒀



Linear 
Models
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Linear 
Models
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Linear 
Models?
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Linear 
Models?
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Nonlinear 
Models
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Feature 
Transforms

 Given 𝑝-dimensional inputs 𝑋 = 𝑋 1 , … , 𝑋 𝑝 , first 

compute some transformation of our input, e.g.,

𝜙 𝑋 1 , 𝑋 2 = 𝑋 1 − 0.5
2
, 𝑋 2 − 0.5

2
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Nonlinear 
Models
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Nonlinear 
Models
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Nonlinear 
Models
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Nonlinear 
Models
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General
𝑘𝑡ℎ-order 
Transforms 

 𝜙2,2 𝑋 1 , 𝑋 2 = 𝑋 1 , 𝑋 2 , 𝑋 1 2
, 𝑋 1 𝑋 2 , 𝑋 2 2

 𝜙2,3 𝑋 1 , 𝑋 2 =

𝜙2,2 𝑋 1 , 𝑋 2 , 𝑋 1 3
, 𝑋 1 2

𝑋 2 , 𝑋 1 𝑋 2 2
, 𝑋 2 3

 𝜙2,4 𝑋 1 , 𝑋 2 =

[𝜙2,3 𝑋 1 , 𝑋 2 , 𝑋 1 4
, 𝑋 1 3

𝑋 2 , 𝑋 1 2
𝑋 2 2

, 𝑋 1 𝑋 2 3
, 𝑋 2 4

]

 𝜙2,𝑄 maps a 2-dimensional input to a  
𝑄 𝑄+3

2
-dimensional output 

 Scales even worse for higher-dimensional inputs…
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Linear 
Models
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Nonlinear 
Models?
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Feature 
Transforms: 
Tradeoffs

Low-Dimensional 
Input Space

High-Dimensional 
Input Space

Training Error High Low

Generalization Good Bad 

Overfitting
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Feature 
Transforms: 
Experiment

 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 20

 Targets are generated by a 10th-order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎2

 ℱ2 = 2nd-order polynomials 

 𝜙1,2 𝑋 = 𝑋, 𝑋2

 ℱ10 = 10th-order polynomials

 𝜙1,10 𝑋 = 𝑋, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

𝑌 = 

𝑑=0

10

𝑎𝑑𝑋
𝑑 + 𝜖
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Poll 1: Which 
model do you 
think will have 
lower training
error?

A. ℱ2
B. ℱ10

 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 20

 Targets are generated by a 10th-order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎2

 ℱ2 = 2nd-order polynomials 

 𝜙1,2 𝑋 = 𝑋, 𝑋2

 ℱ10 = 10th-order polynomials

 𝜙1,10 𝑋 = 𝑋, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

𝑌 = 

𝑑=0

10

𝑎𝑑𝑋
𝑑 + 𝜖
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Poll 2: Which 
model do you 
think will have 
lower true
error?

A. ℱ2
B. ℱ10

 𝑋 ∈ ℝ, 𝑌 ∈ ℝ and 𝑛 = 20

 Targets are generated by a 10th-order polynomial in 

𝑋 with additive Gaussian noise:

where 𝜖 ~ 𝑁 0, 𝜎2

 ℱ2 = 2nd-order polynomials 

 𝜙1,2 𝑋 = 𝑋, 𝑋2

 ℱ10 = 10th-order polynomials

 𝜙1,10 𝑋 = 𝑋, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

𝑌 = 

𝑑=0

10

𝑎𝑑𝑋
𝑑 + 𝜖
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Noisy Targets

• 10-dimensional target 

function with additive 

Gaussian noise

• ℱ2 = 2nd-order polynomial

• ℱ10 = 10th-order 

polynomial
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• ℱ2 = 2nd-order polynomial

• ℱ10 = 10th-order 

polynomial
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• 10-dimensional target 

function with additive 

Gaussian noise

• ℱ2 = 2nd-order polynomial

• ℱ10 = 10th-order 

polynomial



Noisy Targets
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• 10-dimensional target 

function with additive 

Gaussian noise

• ℱ2 = 2nd-order polynomial

• ℱ10 = 10th-order 

polynomial



Noisy Targets

ℱ2 ℱ10

Training 
Error

0.016 0.011

True 
Error

0.009 3797
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Regularization
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 Constrain models to prevent them from overfitting

 Learning algorithms are optimization problems and 

regularization imposes constraints on the optimization



Hard 
Constraints

 ℱ10 = 10th-order polynomials

 𝜙1,10 𝑋 = 𝑋, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

 Given 𝑨 =

1 𝜙1,2 𝑋1
1 𝜙1,2 𝑋2
⋮ ⋮
1 𝜙1,2 𝑋𝑛

and 𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

find                 

𝛽 = 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9, 𝛽10 that minimizes

 Subject to
𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 0

30

1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀
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 ℱ10 = 10th-order polynomials

 𝜙1,10 𝑋 = 𝑋, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

 Given 𝑨 =

1 𝜙1,2 𝑋1
1 𝜙1,2 𝑋2
⋮ ⋮
1 𝜙1,2 𝑋𝑛

and 𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

find                 

𝛽 = 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9, 𝛽10 that minimizes

 Subject to
𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 0

Hard 
Constraints

31

1

𝑛


𝑖=1

𝑛



𝑑=0

10

𝑋𝑖
(𝑑)
𝛽𝑑 − 𝑌𝑖

2

Henry Chai - 2/9/22



 ℱ10 = 10th-order polynomials

 𝜙1,10 𝑋 = 𝑋, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

 Given 𝑨 =

1 𝜙1,2 𝑋1
1 𝜙1,2 𝑋2
⋮ ⋮
1 𝜙1,2 𝑋𝑛

and 𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

find                 

𝛽 = 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9, 𝛽10 that minimizes

 Subject to nothing!

Hard 
Constraints

32

1

𝑛


𝑖=1

𝑛



𝑑=0

2

𝑋𝑖
(𝑑)
𝛽𝑑 − 𝑌𝑖

2
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Hard 
Constraints
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1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

 ℱ2 = 2nd-order polynomials

 𝜙1,2 𝑋 = 𝑋, 𝑋2

 Given 𝑨 =

1 𝜙1,2 𝑋1
1 𝜙1,2 𝑋2
⋮ ⋮
1 𝜙1,2 𝑋𝑛

and 𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

find                 

𝛽 = 𝛽0, 𝛽1, 𝛽2 that minimizes

 Subject to nothing!



Soft 
Constraints

34

 More generally, 𝜙 can be any nonlinear transformation, 

e.g., exp, log, sin, sqrt, etc... 

 Given 𝑨 =
1 𝜙1 𝑋1 ⋯ 𝜙𝑚 𝑋1
⋮ ⋮ ⋱ ⋮
1 𝜙1 𝑋𝑛 ⋯ 𝜙𝑚 𝑋1

and 𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

, 

find 𝛽 that minimizes

 Subject to:

𝛽 2
2 = 𝛽𝑇𝛽 = 

𝑑=0

𝑚

𝛽𝑑
2 ≤ 𝐶

1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀
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𝛽𝑇𝛽 = 𝐶

0,0

subject to 𝛽𝑇𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

መ𝛽

𝐽 𝛽

Soft 
Constraints



𝛽𝑇𝛽 = 𝐶

0,0

መ𝛽
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subject to 𝛽𝑇𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

𝐽 𝛽

Soft 
Constraints



0,0

መ𝛽𝑀𝐴𝑃

37

∇𝛽𝐽 መ𝛽𝑀𝐴𝑃

∇𝛽𝐽 መ𝛽𝑀𝐴𝑃 ∝ −
2

𝑛
መ𝛽𝑀𝐴𝑃

∇𝛽𝐽 መ𝛽𝑀𝐴𝑃 = −
2

𝑛
𝜆𝐶 መ𝛽𝑀𝐴𝑃

∇𝛽𝐽 መ𝛽𝑀𝐴𝑃 +
2

𝑛
𝜆𝐶 መ𝛽𝑀𝐴𝑃 = 0

∇𝛽 𝐽 መ𝛽𝑀𝐴𝑃 +
𝜆𝐶
𝑛

መ𝛽𝑀𝐴𝑃
𝑇 መ𝛽𝑀𝐴𝑃 = 0

Henry Chai - 2/9/22

subject to 𝛽𝑇𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

𝐽 𝛽

𝛽𝑇𝛽 = 𝐶

መ𝛽
Soft 
Constraints



38

minimize 𝐽𝐴𝑈𝐺 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀 +

𝜆𝐶
𝑛
𝛽𝑇𝛽

⇕

Henry Chai - 2/9/22

Soft 
Constraints: 
Solving for መ𝛽𝑀𝐴𝑃

subject to 𝛽𝑇𝛽 ≤ 𝐶

minimize 𝐽 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀
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∇𝛽𝐽𝐴𝑈𝐺 𝛽 =
2

𝑛
𝑨𝑇𝑨𝛽 − 𝑨𝑇𝒀 + 𝜆𝐶𝛽

2

𝑛
𝑨𝑇𝑨 መ𝛽𝑀𝐴𝑃 − 𝑨𝑇𝒀 + 𝜆𝐶 መ𝛽𝑀𝐴𝑃 = 0

𝑨𝑇𝑨 + 𝜆𝐶𝐼𝑚+1
መ𝛽𝑀𝐴𝑃 = 𝑨𝑇𝒀

መ𝛽𝑀𝐴𝑃 = 𝑨𝑇𝑨 + 𝜆𝐶𝐼𝑚+1
−1
𝑨𝑇𝒀

Henry Chai - 2/9/22

minimize 𝐽𝐴𝑈𝐺 𝛽 =
1

𝑛
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀 +

𝜆𝐶
𝑛
𝛽𝑇𝛽

Ridge 
Regression

Adding this positive (𝜆𝐶 ≥ 0) diagonal 

matrix can help if 𝑨𝑇𝑨 is under-determined! 
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Ridge Regression
 10-dimensional target function with 

additive Gaussian noise

 ℱ10 = 10th-order polynomial
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𝝀𝑪 = 𝟎 𝝀𝑪 = 𝟏𝟎−𝟔 𝝀𝑪 = 𝟏𝟎−𝟑 𝝀𝑪 = 𝟏

True 
Error

0.059 0.006 0.008 0.011

Overfit Nice! Wait… Underfit

Ridge Regression
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Setting 𝜆
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Overfitting

Henry Chai - 2/9/22

Setting 𝜆
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Underfitting
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Setting 𝜆
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Setting 𝜆



Other 
Regularizers
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𝐽 𝛽 + 𝜆 𝑝𝑒𝑛 𝛽

Ridge or 𝐿2 𝑝𝑒𝑛 𝛽 = 𝛽 2
2 = 

𝑑=0

𝑝

𝛽𝑑
2

Encourages 
small 
weights

Lasso or 𝐿1 𝑝𝑒𝑛 𝛽 = 𝛽 1 = 

𝑑=0

𝑝

𝛽𝑑
Encourages 
sparsity

𝐿0 𝑝𝑒𝑛 𝛽 = 𝛽 0 = 

𝑑=0

𝑝

𝟙 𝛽𝑑 ≠ 0
Encourages 
sparsity 
(intractable) 
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Other Regularizers

Henry Chai - 2/9/22

0,0

መ𝛽

𝐽 𝛽

0,0

መ𝛽

𝐽 𝛽

0,0

መ𝛽

𝐽 𝛽

Ridge or 𝐿2 Lasso or 𝐿1 𝐿0



M(C)LE for 
Linear 
Regression 

 If we assume a linear model with additive Gaussian noise 

𝑌 = 𝑋𝛽 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎2 → 𝑌 ∼ 𝑁 𝑋𝛽, 𝜎2

 Then given 𝑨 =

1 𝑋1
1 𝑋2
⋮ ⋮
1 𝑋𝑛

and 𝒀 =

𝑌1
𝑌2
⋮
𝑌𝑛

the MLE of 𝛽 is

48Henry Chai - 2/9/22

መ𝛽 = argmax
𝛽

log 𝑃 𝒀 𝑨, 𝛽

= argmax
𝛽

log exp −
1

2𝜎2
𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀

= argmin
𝛽

𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀 = 𝑨𝑇𝑨
−1
𝑨𝑇𝒀



MAP for 
Linear 
Regression 

 If we assume a linear model with additive Gaussian noise 

𝑌 = 𝑋𝛽 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎2 → 𝑌 ∼ 𝑁 𝑋𝛽, 𝜎2

and a Gaussian prior on the weights…

𝛽 ~ 𝑁 0,
𝜎2

𝜆
→ 𝑝 𝛽 ∝ exp −

1

2𝜎2
𝜆𝛽𝑇𝛽

 … then, the MAP of 𝛽 is the ridge regression solution!

መ𝛽𝑀𝐴𝑃 = argmin
𝛽

𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀 + 𝜆𝛽𝑇𝛽

−= 𝑨𝑻𝑨 + 𝜆𝐼𝑝+1
−1
𝑨𝑇𝒀

49Henry Chai - 2/9/22



MAP for 
Linear 
Regression 
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 If we assume a linear model with additive Gaussian noise 

𝑌 = 𝑋𝛽 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎2 → 𝑌 ∼ 𝑁 𝑋𝛽, 𝜎2

and a Laplace prior on the weights…

𝛽 ~ Laplace 0,
2𝜎2

𝜆
→ 𝑝 𝛽 ∝ exp −

1

2𝜎2
𝜆 𝛽 1

 … then, the MAP of 𝛽 is the lasso regression solution!

መ𝛽𝑀𝐴𝑃 = argmin
𝛽

𝑨𝛽 − 𝒀 𝑇 𝑨𝛽 − 𝒀 + 𝜆 𝛽 1

 No closed form solution but can solve via sub-gradient descent


