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* (Univariate) Gaussians:

x~N(;u=002=1)

CEINYENRR

* Multivariate Gaussians:

f = [xl, ...,xp]T

~ N (% =0,3=1)
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* Closure under linear transformations:

Some fun . i
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fore R4y ~ ~ N(i+ &, 2+ S)

* Closure under condltl?nmg
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Some old Gaussian process =

friends

Bayesian linear regression + Kernels

—_— e ————
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Some old (Gaussian process =

friends

Bayesian linear regression + Kernels
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* If we assume a linear model with additive Gaussian noise

Recall: MAP for y = Af + Ewhere é~ N (0,021, ) > 5 ~ N (4f,0%1,)

Linear and a Gaussian prior on the weights...
Regression

2

B’ ~N <6p+1,07]p+1) - P (ﬁ) < exp (—Tiz (AETED

* ... then, the MAP ofﬁ is the ridge regression solution!

P = argmin (47 - 7) (46 -)+ 2678

= (ATA + Aly,,) AT

——
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Bayesian
Linear
Regression

Henry Chai - 4/18/22

* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

y = A,E + € wheree ~ N (Bn; Uzln) and E ~N (6P+1’2)

——

* then,

5 ~ N(A6+6) AZA+ G-zl_n>



* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

Bayesian
Linear
Regression * then,

¥ = AB + €where €~ N (Bn, azln) and f ~ N (6p+1,2)

y ~ N (0, AZAT + 021,
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

B.aVeSIBH = AE + € where € ~ N (Bn, azln) and ,5 ~ N (6p+11@
Linear , _
Regression " then,

(] 12 )

; 5. |77 AzAm~+a7,

- Covariance between § and §:

o (§,P) = Co«CAf

Henry Chai - 4/18/22 A C oV

)= GlAp,F)
7Y = A



Bayesian
Linear
Regression
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

¥ = A + € where €~ N (Bn, azln) and § ~ N (6p+1,2)

—

b=

p+1
Op

¥ »AT
'|Ax AZAT + 621,

- Covariance between y and :

Cov (3,F) = Cov (4f + & f) = ACov (. f) = 43
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Bayesian
Linear
Regression
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

¥ = AR + € where €~ N (6n, azln) and § ~ N (BPH,Z)

By ~ N(tposr Lpost)
where
fiposT = ZAT(AZAT + Uzln)_lf},

Spost = & — SAT(AZAT + 621,) AT
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Bayesian
Linear
Regression
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
v = AB + €where €~ N (6n, azln) and § ~ N (6p+1,2)

- then given a new test data point X*, the prediction is

yiy=x"Fly~ N(x HposT) X" LposTX )

—_

where
fpost = ZAT(AZAT + 021,) 7,

Sposr = & — SAT(AZAT + 621,) AT
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

Bayesian

Linear
Regression - then given a new test data point x*, the prediction is

x| = —>*T_> - -
vy =x* B |y ~ N(iprep, ZpreD)

y = Aﬁ + € wheree ~ N (6n, azln) and E ~N (6p+1'2)

where

fprep = % SAT(AZAT + 021,) " 7,

Spagn= %" L% — % LAT(AZAT + 021, AZZ"
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Some old

friends
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(Gaussian process =

Bayesian linear regression + Kernels
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Some old

friends
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(Gaussian process =

Bayesian linear regression + Kernels
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Bayesian
Linear
Regression...

Henry Chai - 4/18/22

* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = AE + € where € ~ N (6n, azln) and E ~N (6p+1,2)

- then given a new test data point x*, the prediction is

y|y =

-

—>*T - -
x*" B |y ~ N(prep, ZpRED)

where

fprep = 2 SAT (ASAT + 621,) ',

Sposr = X 22" — 2 SAT(AZAT + 021,)  AZE"
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Bayesian
Linear
Regression can
be kernelized!

1 pGh)
1 g6y

1 ¢(E)
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®f + éwhere €~ N (6,,,, azln) and § ~ N (ﬁer,Z)

* then given a new test data point Zc’_*, the prediction is
vy = ¢ B |y ~ N(iiprep, ZpreD)

where

- - % -1 -
fiprep = PE)TERT (TP + 021,,) Y,

/_-—-\

z:POST

= pE)TIPE") — pENTOT (DZDT + 021,) " DPLP(F")
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Bayesian
Linear
Regression can
be kernelized!

1 ¢
1 $(%)

1 p(E)
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

y = ®f + Ewhere €~ N (6,1, azln) and § ~ N (6pr+1@

- then given a new test data point xX*, the prediction is
vy = ¢&)'B |y ~ N(iiprep, ZprED)

where
Upnen = @E)TZOT (DT + azln)_lﬁ,
LposT
— p@EITIPEY) — ENTZOT(DZDT + o7,)  DIP(E")
T
* Define the kernel function to be ~ UU

KG ) = d(@DTE6@) 8 P54




Bayesian
Linear
Regression can

be kernelized!
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®f + éwhere €~ N ((_))n, azln) and § ~ N (6p1+1,2)

- then given a new test data point x*, the prediction is
v*|¥ ~ N(liprep, ZprED)

where

- - -1,
lprep = K(X ,AQ(K(A, A) +0?L,) ¥,

Sposr = K@, %) — K@, A)(K(A,A) + 021,) K(4,%)

o o (x*, D
K (Y* /}Q: [i‘(g“, :z)

* Define the kernel function to be K(,(*/ X ,\\
K, %) = p(@)Ep(xX")
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

Wait. what y = ®B + € where€ ~ N (Gn,azln) and 8 ~ N (6p1+1,2)
V4

happened to » then given a new test data point X*, the prediction is
the weights? y*|y ~ N(tprep) ZpreD)

where
- - -1,
fprep = KX, A)(K(4,4) + 0%L,) 3,
Sposr = K@, %) — K@, A)(K(A,A) + 021,) K(4,%)

* Define the kernel function to be
Henry Chai - 4/18/22 K(f,f,) — ¢(3_C>)TZ¢(3?,) 20



Some old

friends
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Gaussian process =

Bayesian linear regression + Kernels
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A new

perspective
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Gaussian process =

The extension of a Gaussian

distribution to functions
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* (Univariate) Gaussians:

x~N(;u=002=1)

CEINYENRR

* Multivariate Gaussians:

.7? = [xl, ...,xp]T

~ N (%i=0,2=1,)
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A

fiR? > R~GP(fiu(x) ,2(xx") )

\\

Gaussian \

Process (GP) o / >/ /
/

X

f~GPW2) = f(x) ~ N(u(x),Z(x, x))
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* (Univariate) Gaussians:

x~N(;u=002=1)

CEINYENRR

* Multivariate Gaussians:
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Gaussian

Process (GP)

Henry Chai - 4/18/22

~,§w(»3><'

AT _(;f Qdaa/‘" i~ O
fiRP & R~ GP(f; u(x) = 0,2(x,x) = exp(—(x —x")?))
~—— Samples ~——Mean CI+2 Standa.lu )D(e;at?g;s‘) 2

X! y'

f~GPW2) = f(x) ~ N(u(x),Z(x, x))
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, 6{ m(VY X"’)

7

fiRP = R ~ gga(fu(x)_OZ(xx)—exp( [x = x"]))

—— Samples ——Mean  C3+2 Standard Deviatio

o M
aussian w‘ L “I‘M)‘ i M\ n

'H,
s Mt N

< T

f~GPW2) = f(x) ~ N(u(x),Z(x, x))

Process (GP)
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GP Prior
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fiRP = R~ GP(f; u(x) = 0,2(x,x") = exp(—(x — x)?))

—— Mean 142 Standard Deviations
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GP Posterior
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f1D ~GP(f; up, Zp)

oD = Data — Mean 142 Standard Deviations
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f1D ~GP(f; up, Zp)

~——Samples D = Data ——Mean [3+2 Standard Deviations /

GP Posterior
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f1D ~GP(f; up, Zp)

——Samples oD =Data ——Mean 342 Standard Deviations

GP Posterior

fx*) ~ N (pp(x*), Zp(x*, x*))

X :E*
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Active

Learning
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®D = Data —— Mean 142 Standard Deviations

YN
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Suppose you
can add one
data point to

®D = Data —— Mean 142 Standard Deviations

your training /
data. \/\\—\/

Which point
would you add
and why?
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Are GPs:

1. parametric or

nonparametric

2. generative or
discriminative

Henry Chai - 4/18/22

f1D~

~—— Samples

ng (fr UD, ZD)

oD = Data — Mean 142 Standard Deviations
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GPs are

1. parametric or
nonparametric

2. generative or
discriminative
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f1D ~GP(f; up, Zp)

——Samples oD = Data ——Mean [3+2 Standard Deviations

Py1X) o p{ 0l

X! L b"w \,JOU\\ \\z\u) hob(\
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Log-Likelihood of D:
log N(y; u(A), 2(4,4)) = —8.26

log N(y; u(A),2(4,4)) ==6.8

X ¥4

—_— / - N2
f~GP (f; 0,(1%) exp <_ & 12x )2>> f~GP <f; 0,(22) exp (— ) ))

22

Kernel Hyperparameters
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