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Gaussians
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 (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎2 = 1

 Multivariate Gaussians: lllllll

Ԧ𝑥 = 𝑥1, … , 𝑥𝑝
𝑇

∼ 𝒩 Ԧ𝑥; Ԧ𝜇 = 0𝑝, Σ = 𝐼𝑝



Some fun   
facts about 
Gaussians
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 Closure under linear transformations:

If Ԧ𝑥 ∼ 𝒩 Ԧ𝑥; Ԧ𝜇, Σ ,

then 𝐶 Ԧ𝑥 + 𝑏 ∼ 𝒩 𝐶 Ԧ𝜇 + 𝑏, 𝐶Σ𝐶𝑇

 Closure under addition:

If Ԧ𝑥 ∼ 𝒩 Ԧ𝑥; Ԧ𝜇, Σ and Ԧ𝑦 ∼ 𝒩 Ԧ𝑦;𝑚, 𝑆 ,

then Ԧ𝑥 + Ԧ𝑦 ∼ 𝒩 Ԧ𝜇 +𝑚, Σ + 𝑆

 Closure under conditioning: 

If Ԧ𝑥 =
𝑥1
𝑥2

∼ 𝒩
𝑥1
𝑥2

;
𝜇1
𝜇2

,
Σ11 Σ12
Σ21 Σ22

,

then 𝑥1|𝑥2 = 𝑐 ∼ 𝒩 𝑥1; 𝜇1 + Σ12Σ22
−1 𝑐 − 𝜇2 , Σ11 − Σ12Σ22

−1Σ21



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels
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Recall: MAP for 
Linear 
Regression 

 If we assume a linear model with additive Gaussian noise 

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 → Ԧ𝑦 ∼ 𝑁 𝐴 Ԧ𝛽, 𝜎2𝐼𝑛

and a Gaussian prior on the weights…

Ԧ𝛽 ~ 𝑁 0𝑝+1,
𝜎2

𝜆
𝐼𝑝+1 → 𝑝 Ԧ𝛽 ∝ exp −

1

2𝜎2
𝜆 Ԧ𝛽𝑇 Ԧ𝛽

 … then, the MAP of Ԧ𝛽 is the ridge regression solution!

Ԧ𝛽𝑀𝐴𝑃 = argmin
𝛽

𝐴 Ԧ𝛽 − Ԧ𝑦
𝑇

𝐴 Ԧ𝛽 − Ԧ𝑦 + 𝜆 Ԧ𝛽𝑇 Ԧ𝛽

−. = 𝐴𝑻𝐴 + 𝜆𝐼𝑝+1
−1
𝐴𝑇 Ԧ𝑦
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𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛



Bayesian
Linear 
Regression
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 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then, 

Ԧ𝑦 ∼ 𝑁 𝐴0𝑝+1 + 0𝑛, 𝐴Σ𝐴
𝑇 + 𝜎2𝐼𝑛

𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛



Bayesian
Linear 
Regression
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𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛

 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then, 

Ԧ𝑦 ∼ 𝑁 0𝑛, 𝐴Σ𝐴
𝑇 + 𝜎2𝐼𝑛



Bayesian
Linear 
Regression
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𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛

 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then, 

Ԧ𝛽

Ԧ𝑦
∼ 𝑁

0𝑝+1

0𝑛
,

Σ ? ? ?
? ? ? 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛

 Covariance between Ԧ𝑦 and Ԧ𝛽:

Cov Ԧ𝑦, Ԧ𝛽 = Cov 𝐴 Ԧ𝛽 + Ԧ𝜖, Ԧ𝛽 = 𝐴Cov Ԧ𝛽, Ԧ𝛽 = 𝐴Σ



Bayesian
Linear 
Regression
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𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛

 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then, 

Ԧ𝛽

Ԧ𝑦
∼ 𝑁

0𝑝+1

0𝑛
,
Σ Σ𝐴𝑇

𝐴Σ 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛

 Covariance between Ԧ𝑦 and Ԧ𝛽:

Cov Ԧ𝑦, Ԧ𝛽 = Cov 𝐴 Ԧ𝛽 + Ԧ𝜖, Ԧ𝛽 = 𝐴Cov Ԧ𝛽, Ԧ𝛽 = 𝐴Σ



 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then, 

Ԧ𝛽| Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑂𝑆𝑇 , Σ𝑃𝑂𝑆𝑇

where

Ԧ𝜇𝑃𝑂𝑆𝑇 = Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛
−1

Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇 = Σ − Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛
−1
𝐴Σ

 Covariance between Ԧ𝑦 and Ԧ𝛽:

Cov Ԧ𝑦, Ԧ𝛽 = Cov 𝐴 Ԧ𝛽 + Ԧ𝜖, Ԧ𝛽 = 𝐴Cov Ԧ𝛽, Ԧ𝛽 = 𝐴Σ

Bayesian
Linear 
Regression
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𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛



 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 = Ԧ𝑥∗
𝑇 Ԧ𝛽 | Ԧ𝑦 ∼ 𝑁 Ԧ𝑥∗

𝑇
Ԧ𝜇𝑃𝑂𝑆𝑇 , Ԧ𝑥

∗𝑇Σ𝑃𝑂𝑆𝑇 Ԧ𝑥
∗

where

Ԧ𝜇𝑃𝑂𝑆𝑇 = Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛
−1

Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇 = Σ − Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛
−1
𝐴Σ

 Covariance between Ԧ𝑦 and Ԧ𝛽:

Cov Ԧ𝑦, Ԧ𝛽 = Cov 𝐴 Ԧ𝛽 + Ԧ𝜖, Ԧ𝛽 = 𝐴Cov Ԧ𝛽, Ԧ𝛽 = 𝐴Σ
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Linear 
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𝐴 =

1 Ԧ𝑥1
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⋮ ⋮
1 Ԧ𝑥𝑛



 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 = Ԧ𝑥∗
𝑇 Ԧ𝛽 | Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑅𝐸𝐷, Σ𝑃𝑅𝐸𝐷

where

Ԧ𝜇𝑃𝑅𝐸𝐷 = Ԧ𝑥∗
𝑇
Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛

−1
Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇 = Ԧ𝑥∗
𝑇
Σ Ԧ𝑥∗ − Ԧ𝑥∗

𝑇
Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛

−1
𝐴Σ Ԧ𝑥∗

 Covariance between Ԧ𝑦 and Ԧ𝛽:

Cov Ԧ𝑦, Ԧ𝛽 = Cov 𝐴 Ԧ𝛽 + Ԧ𝜖, Ԧ𝛽 = 𝐴Cov Ԧ𝛽, Ԧ𝛽 = 𝐴Σ

Bayesian
Linear 
Regression 
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𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛
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Bayesian
Linear 
Regression…
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 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = 𝐴 Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 = Ԧ𝑥∗
𝑇 Ԧ𝛽 | Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑅𝐸𝐷 , Σ𝑃𝑅𝐸𝐷

where

Ԧ𝜇𝑃𝑅𝐸𝐷 = Ԧ𝑥∗
𝑇
Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛

−1
Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇 = Ԧ𝑥∗
𝑇
Σ Ԧ𝑥∗ − Ԧ𝑥∗

𝑇
Σ𝐴𝑇 𝐴Σ𝐴𝑇 + 𝜎2𝐼𝑛

−1
𝐴Σ Ԧ𝑥∗

 Covariance between Ԧ𝑦 and Ԧ𝛽:

Cov Ԧ𝑦, Ԧ𝛽 = Cov 𝐴 Ԧ𝛽 + Ԧ𝜖, Ԧ𝛽 = 𝐴Cov Ԧ𝛽, Ԧ𝛽 = 𝐴Σ

𝐴 =

1 Ԧ𝑥1
1 Ԧ𝑥2
⋮ ⋮
1 Ԧ𝑥𝑛



Bayesian
Linear 
Regression can 
be kernelized!
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 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = Φ Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝′+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 = 𝜙 Ԧ𝑥∗ 𝑇 Ԧ𝛽 | Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑅𝐸𝐷, Σ𝑃𝑅𝐸𝐷

where

Ԧ𝜇𝑃𝑅𝐸𝐷 = 𝜙 Ԧ𝑥∗ 𝑇ΣΦ𝑇 ΦΣΦ𝑇 + 𝜎2𝐼𝑛
−1

Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇

= 𝜙 Ԧ𝑥∗ 𝑇Σ𝜙 Ԧ𝑥∗ − 𝜙 Ԧ𝑥∗ 𝑇ΣΦ𝑇 ΦΣΦ𝑇 + 𝜎2𝐼𝑛
−1
ΦΣ𝜙 Ԧ𝑥∗

Φ =

1 𝜙 Ԧ𝑥1
1 𝜙 Ԧ𝑥2
⋮ ⋮
1 𝜙 Ԧ𝑥𝑛



Bayesian
Linear 
Regression can 
be kernelized!
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 Assume a linear model with additive Gaussian noise and a   

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = Φ Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝′+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 = 𝜙 Ԧ𝑥∗ 𝑇 Ԧ𝛽 | Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑅𝐸𝐷, Σ𝑃𝑅𝐸𝐷

where

Ԧ𝜇𝑃𝑅𝐸𝐷 = 𝜙 Ԧ𝑥∗ 𝑇ΣΦ𝑇 ΦΣΦ𝑇 + 𝜎2𝐼𝑛
−1

Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇

= 𝜙 Ԧ𝑥∗ 𝑇Σ𝜙 Ԧ𝑥∗ − 𝜙 Ԧ𝑥∗ 𝑇ΣΦ𝑇 ΦΣΦ𝑇 + 𝜎2𝐼𝑛
−1
ΦΣ𝜙 Ԧ𝑥∗

 Define the kernel function to be 

𝐾 Ԧ𝑥, Ԧ𝑥′ = 𝜙 Ԧ𝑥 𝑇Σ𝜙 Ԧ𝑥′

Φ =

1 𝜙 Ԧ𝑥1
1 𝜙 Ԧ𝑥2
⋮ ⋮
1 𝜙 Ԧ𝑥𝑛
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Linear 
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 Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = Φ Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝′+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑅𝐸𝐷, Σ𝑃𝑅𝐸𝐷

where

Ԧ𝜇𝑃𝑅𝐸𝐷 = 𝐾 Ԧ𝑥∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎2𝐼𝑛
−1

Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇 = 𝐾 Ԧ𝑥∗, Ԧ𝑥∗ − 𝐾 Ԧ𝑥∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎2𝐼𝑛
−1
𝐾 𝐴, Ԧ𝑥∗

 Define the kernel function to be 

𝐾 Ԧ𝑥, Ԧ𝑥′ = 𝜙 Ԧ𝑥 𝑇Σ𝜙 Ԧ𝑥′



Wait, what 
happened to 
the weights?
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 Assume a linear model with additive Gaussian noise and a   

zero-mean Gaussian prior on the weights:

Ԧ𝑦 = Φ Ԧ𝛽 + Ԧ𝜖 where Ԧ𝜖 ~ 𝑁 0𝑛, 𝜎
2𝐼𝑛 and Ԧ𝛽 ~ 𝑁 0𝑝′+1, Σ

 then given a new test data point Ԧ𝑥∗, the prediction is  

𝑦∗| Ԧ𝑦 ∼ 𝑁 Ԧ𝜇𝑃𝑅𝐸𝐷, Σ𝑃𝑅𝐸𝐷

where

Ԧ𝜇𝑃𝑅𝐸𝐷 = 𝐾 Ԧ𝑥∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎2𝐼𝑛
−1

Ԧ𝑦,

Σ𝑃𝑂𝑆𝑇 = 𝐾 Ԧ𝑥∗, Ԧ𝑥∗ − 𝐾 Ԧ𝑥∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎2𝐼𝑛
−1
𝐾 𝐴, Ԧ𝑥∗

 Define the kernel function to be 

𝐾 Ԧ𝑥, Ԧ𝑥′ = 𝜙 Ԧ𝑥 𝑇Σ𝜙 Ԧ𝑥′
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A new 
perspective
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Gaussian process = 

The extension of a Gaussian 

distribution to functions



Gaussians
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 (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎2 = 1

 Multivariate Gaussians: lllllll

Ԧ𝑥 = 𝑥1, … , 𝑥𝑝
𝑇

∼ 𝒩 Ԧ𝑥; Ԧ𝜇 = 0𝑝, Σ = 𝐼𝑝



Gaussian 
Process (GP)

24

𝑓:ℝ𝑝 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′ 2

𝑓 ~ 𝒢𝒫 𝜇, Σ → 𝑓 𝑥 ~𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥
Henry Chai - 4/18/22



Gaussians
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 (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎2 = 1

 Multivariate Gaussians: lllllll

Ԧ𝑥 = 𝑥1, … , 𝑥𝑝
𝑇

∼ 𝒩 Ԧ𝑥; Ԧ𝜇 = 0𝑝, Σ = 𝐼𝑝



Gaussian 
Process (GP)

26

𝑓:ℝ𝑝 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′ 2
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𝑓 ~ 𝒢𝒫 𝜇, Σ → 𝑓 𝑥 ~𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥



Gaussian 
Process (GP)
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𝑓 ~ 𝒢𝒫 𝜇, Σ → 𝑓 𝑥 ~𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥

𝑓:ℝ𝑝 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′



GP Prior
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𝑓:ℝ𝑝 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′ 2
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GP Posterior

29

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

Henry Chai - 4/18/22



GP Posterior
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𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟
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GP Posterior

31

𝑓 𝑥∗ ~𝒩 𝜇𝒟 𝑥∗ , Σ𝒟 𝑥∗, 𝑥∗

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

Henry Chai - 4/18/22



Active 
Learning
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Suppose you 
can add one 
data point to 
your training 
data. 

Which point 
would you add 
and why?
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𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

Henry Chai - 4/18/22

Are GPs:

1. parametric or 
nonparametric

2. generative or 
discriminative
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𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟
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GPs are

1. parametric or 
nonparametric

2. generative or 
discriminative



Kernel Hyperparameters
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Log-Likelihood of 𝒟:

log𝑁 𝑦; 𝜇 𝐴 , 𝛴 𝐴, 𝐴 = −6.82

Log-Likelihood of 𝒟:

log𝑁 𝑦; 𝜇 𝐴 , 𝛴 𝐴, 𝐴 = −8.26

𝑓 ∼ 𝒢𝒫 𝑓; 0, 12 exp −
𝑥 − 𝑥′ 2

12
𝑓 ∼ 𝒢𝒫 𝑓; 0, 22 exp −

𝑥 − 𝑥′ 2

22
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