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Maximal 
Margin Linear 
Separators

x The margin of a linear separator is the distance between it 
and the nearest training data point

x Questions:

1. How can we efficiently find a maximal-margin linear 
separator?

2. Why are linear separators with larger margins better?

3. What can we do if the data is not linearly separable?
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Hyperplanes

x For linear models, decision boundaries are ܦ-dimensional 
hyperplanes defined by a weight vector, ܾǡ࢝

்࢝࢞ ൅ ܾ ൌ Ͳ

x Problem: there are infinitely many weight vectors that 
describe the same hyperplane

x ଵݔ ൅ ଶݔʹ ൅ ʹ ൌ Ͳ is the same line as 
ଵݔʹ ൅ Ͷݔଶ ൅ Ͷ ൌ Ͳ, which is the same line as 
ͳͲͲͲͲͲͲݔଵ ൅ ʹͲͲͲͲͲͲݔଶ ൅ ʹͲͲͲͲͲͲ ൌ Ͳ

x Solution: normalize weight vectors w.r.t. the training data
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Normalizing 
Hyperplanes

x Given a dataset ࣞ ൌ ࢞ ௜ ǡ ݕ ௜
௜ୀଵ
ே

where ݕ א െͳǡ൅ͳ ,      

ොݕ ൌ ���� ்࢝࢞ ൅ ܾ is a valid linear separator if 

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൐ Ͳ ׊ ࢞ ௜ ǡ ݕ ௜ א ࣞ

x &Žƌ�^sDƐ͕�ǁĞ͛ƌĞ�ŐŽŝŶŐ�ƚŽ�ĐŽŶƐŝĚĞƌ�ůŝŶĞĂƌ�ƐĞƉĂƌĂƚŽƌƐ�ŝŶ�ƚŚĞ�ƐĞƚ

࣢ ൌ ොݕ ൌ ���� ்࢝࢞ ൅ ܾ ǣ ���
࢞ ೔ ǡ௬ ೔ א ࣞ

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൌ ͳ

x If ොݕ ൌ ���� ்࢝࢞ ൅ ܾ is a linear separator, then 

ොݕ ൌ ���� ࢝೅

ఘ
࢞ ൅ ௕

ఘ
א ࣢ where 

ߩ ൌ ���
࢞ ೔ ǡ௬ ೔ א ࣞ

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ
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ܾ ଵݓ ଶݓ

-0.2 -0.6 1 ב ࣢

-0.4 -1.2 2 ב ࣢

-2 -6 10 ב ࣢

-10 -30 50 א ࣢

0.2 -0.6 0.2 ב ࣢

0.1 -0.3 0.1 ב ࣢

1 -3 1 ב ࣢

2 -6 2 א ࣢

Normalizing 
Hyperplanes: 
Example
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ଵݔ ଶݔ ݕ ݕ ்࢝࢞ ൅ ܾ
0.2 0.4 +1 0.8

0.3 0.8 +1 4.2

0.7 0.6 -1 0.2

0.8 0.3 -1 3.8

ݕ ்࢝࢞ ൅ ܾ
4

21

1

19

ݕ ்࢝࢞ ൅ ܾ
0.8

0.9

0.5

1.1

ݕ ்࢝࢞ ൅ ܾ
1.6

1.8

1

2.2



Computing the 
Margin

x Claim: ࢝ is orthogonal to the hyperplane ்࢝࢞ ൅ ܾ ൌ Ͳ
(the decision boundary)

x A vector is orthogonal to a hyperplane if it is orthogonal to 
every vector in that hyperplane

x Vectors ࢻ and ࢼ are orthogonal if ࢼ்ࢻ ൌ Ͳ

x Proof:

x Let ࢞Ԣ and ࢞ǳ be two arbitrary points on ்࢝࢞ ൅ ଴ݓ ൌ Ͳ

x ࢞Ԣ െ ࢞ǳ is a vector on ்࢝࢞ ൅ ଴ݓ ൌ Ͳ

x ்࢝࢞ ൅ ଴ݓ ൌ Ͳ ՜ ்࢝࢞ ൌ െݓ଴

x ்࢝ ࢞Ԣ െ ࢞ǳ ൌ ்࢝࢞Ԣ െ ்࢝࢞ǳ ൌ െݓ଴ ൅ ଴ݓ ൌ Ͳ ז
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࢞ǳ

࢝

்࢝࢞ ൅ ܾ ൌ Ͳ
࢞Ԣ



Computing the 
Margin

x Let ࢞Ԣ be an arbitrary point on the hyperplane            
்࢝࢞ ൅ ܾ ൌ Ͳ and let ࢞ǳ be an arbitrary point

x The distance between ࢞ǳ and ்࢝࢞ ൅ ܾ ൌ Ͳ is equal to 

the magnitude of the projection of ࢞ǳ െ ࢞Ԣ onto ࢝
࢝ మ

, 

the unit vector orthogonal to the hyperplane
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࢞Ԣ

࢞ǳ
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x Let ࢞Ԣ be an arbitrary point on the hyperplane               
݄ ࢞ ൌ ்࢝࢞ ൅ ܾ ൌ Ͳ and let ࢞ǳ be an arbitrary point

x The distance between ࢞ǳ and ݄ ࢞ ൌ ்࢝࢞ ൅ ܾ ൌ Ͳ is equal 

to the magnitude of the projection of ࢞ǳ െ ࢞Ԣ onto ࢝
࢝ ૛

,    

the unit vector orthogonal to the hyperplane

݀ ࢞ǳǡ ݄ ൌ
்࢝ ࢞ǳ െ ࢞ᇱ

࢝ ଶ
ൌ

்࢝࢞ǳ െ ்࢝࢞Ԣ
࢝ ଶ

݀ ࢞ǳǡ ݄ ൌ
்࢝࢞ǳ ൅ ܾ

࢝ ଶ

Computing the 
Margin
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Computing the 
Margin

x The margin of a linear separator is the distance between it and 
the nearest training data point

���
࢞ ೔ ǡ௬ ೔ א ࣞ

݀ ࢞ ௜ ǡ ݄ ൌ ���
࢞ ೔ ǡ௬ ೔ א ࣞ

்࢝࢞ ௜ ൅ ܾ
࢝ ଶ

���
࢞ ೔ ǡ௬ ೔ א ࣞ

݀ ࢞ ௜ ǡ ݃ ൌ
ͳ
࢝ ଶ

���
࢞ ೔ ǡ௬ ೔ א ࣞ

்࢝࢞ ௜ ൅ ܾ

���
࢞ ೔ ǡ௬ ೔ א ࣞ

݀ ࢞ ௜ ǡ ݃ ൌ
ͳ
࢝ ଶ

���
࢞ ೔ ǡ௬ ೔ א ࣞ

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ

���
࢞ ೔ ǡ௬ ೔ א ࣞ

݀ ࢞ ௜ ǡ ݃ ൌ
ͳ
࢝ ଶ
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������� �� ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൒ ͳ ׊ ࢞ ௜ ǡ ݕ ௜ א ࣞ

��������
ͳ
ʹ
்࢝࢝

Maximizing the 
Margin
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������� �� ���
࢞ ೔ ǡ௬ ೔ א ࣞ

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൌ ͳ

��������
ͳ
࢝ ଶ

֟

������� �� ���
࢞ ೔ ǡ௬ ೔ א ࣞ

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൌ ͳ
�������� ࢝ ଶ

֟
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������� �� ���
࢞ ೔ ǡ௬ ೔ א ࣞ

ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൌ ͳ

��������
ͳ
ʹ

࢝ ଶ
ଶ

֟



x If ෠ܾǡ ෝ࢝ is the optimal solution, then ׌ at least one training 

data point ࢞ ௜ ǡ ݕ ௜ א ࣞ s.t ݕ ௜ ෝ்࢝࢞ ௜ ൅ ෠ܾ ൌ ͳ

x All training data points ࢞ ௜ ǡ ݕ ௜ א ࣞ where 

ݕ ௜ ෝ்࢝࢞ ௜ ൅ ෠ܾ ൌ ͳ are known as support vectors

x Converting the non-linear constraint (involving the ���) to 
ܰ linear constraints means we can use quadratic 

programming (QP) to solve this problem in ܱ ଷܦ time

Maximizing the 
Margin
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������� �� ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൒ ͳ ׊ ࢞ ௜ ǡ ݕ ௜ א ࣞ

��������
ͳ
ʹ
்࢝࢝



x Define a model and model parameters

x Assume a linear decision boundary (with 
normalized weights)

݄ ࢞ ൌ ்࢝࢞ ൅ ܾ ൌ Ͳ

x Parameters: ࢝ ൌ ଵǡǥݓ ǡݓ஽ and ܾ

x Write down an objective function (with constraints)

x Optimize the objective w.r.t. the model parameters

x Solve using quadratic programming

Recipe 
for 
SVMs
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Why Maximal 
Margins?

18Henry Chai - 3/21/22

x Consider three binary data points in a bounded 2-D space

x Let ࣢ ൌ {all linear separators} and                                     

࣢ఘൌ {all linear separators with minimum margin ߩ} 



Why Maximal 
Margins?
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x Consider three binary data points in a bounded 2-D space

x ࣢ ൌ {all linear separators} can always correctly classify any 
three (non-colinear) data points in this space 



Why Maximal 
Margins?

20Henry Chai - 3/21/22

ߩ

x Consider three binary data points in a bounded 2-D space

x ࣢ఘ ൌ {all linear separators with minimum margin ߩ} cannot 

always correctly classify three non-colinear data points



Summary 
Thus Far 

x The margin of a linear separator is the distance between it 
and the nearest training data point

x Questions:

1. How can we efficiently find a maximal-margin linear 
separator? By solving a constrained quadratic 
optimization problem using quadratic programming

2. Why are linear separators with larger margins 
better? dŚĞǇ͛ƌĞ�ƐŝŵƉůĞƌ�ΎǁĂǀĞƐ�ŚĂŶĚƐΎ

3. What can we do if the data is not linearly 
separable? Next!
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Linearly 
Inseparable 
Data

x What can we do if the data is not linearly separable?

1. Accept some non-zero training error

x How much training error should we tolerate?

2. Apply a non-linear transformation that shifts the 
data into a space where it is linearly separable

x How can we pick a non-linear transformation?
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x When ࣞ is not linearly separable, there are no feasible 
solutions to this optimization problemSVMs
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x When ࣞ is not linearly separable, there are no feasible 
solutions to this optimization problem

Hard-margin
SVMs
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ʹ
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Soft-margin 
SVMs
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������� �� ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൒ ͳ െ ߦ ௜ ׊ ࢞ ௜ ǡ ݕ ௜ א ࣞ

��������
ͳ
ʹ
்࢝࢝ ൅ ෍ܥ

௜ୀଵ

ே

ߦ ௜

������� �� ߦ ௜ ൒ Ͳ ̴ ̴ ̴ ׊ ݅ א ͳǡǥ ǡܰ



x ߦ ௜ ŝƐ�ƚŚĞ�͞ƐŽĨƚ͟�ĞƌƌŽƌ�ŽŶ�ƚŚĞ�݅௧௛ training data point

x If ߦ ௜ ൐ ͳ, then ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൏ Ͳ ֜

࢞ ௜ ǡ ݕ ௜ is incorrectly classified 

x If Ͳ ൏ ߦ ௜ ൏ ͳ, then ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൐ Ͳ ֜

࢞ ௜ ǡ ݕ ௜ is correctly classified but inside the margin 

x ŝƐ�ƚŚĞ�͞ƐŽĨƚ͟�ƚƌĂŝŶŝŶŐ�ĞƌƌŽƌ

Soft-margin 
SVMs
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Soft-margin 
SVMs
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������� �� ݕ ௜ ்࢝࢞ ௜ ൅ ܾ ൒ ͳ െ ߦ ௜ ׊ ࢞ ௜ ǡ ݕ ௜ א ࣞ

��������
ͳ
ʹ
்࢝࢝ ൅ ෍ܥ

௜ୀଵ

ே

ߦ ௜

������� �� ߦ ௜ ൒ Ͳ ̴ ̴ ̴ ׊ ݅ א ͳǡǥ ǡܰ

x Still solvable using quadratic programming 

x All training data points ࢞ ௜ ǡ ݕ ௜ א ࣞ where 

ݕ ௜ ෝ்࢝࢞ ௜ ൅ ෠ܾ ൑ ͳ are known as support vectors



Interpreting ߦ ௜
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Interpreting ߦ ௜
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support 
vector

support 
vector

support 
vector
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Interpreting ߦ ௜
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Interpreting ߦ ௜

͞ŵĂƌŐŝŶ͟
support 
vector

͞ŵargin͟
support 
vector

͞ŵargin͟
support 
vector
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Ͳ ൏ ߦ ௜ ൏ ͳ

Ͳ ൏ ߦ ௜ ൏ ͳ

Ͳ ൏ ߦ ௜ ൏ ͳ

Ͳ ൏ ߦ ௜ ൏ ͳ
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Interpreting ߦ ௜
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ߦ ௜ ൐ ͳ
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Interpreting ߦ ௜



Setting ܥ

Smaller ܥ

x ܥ is a tradeoff parameter (much like 
the tradeoff parameter in 
regularization)
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Larger ܥ Hard Margin
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ͳ
ʹ
்࢝࢝ ൅ ෍ܥ

௜ୀଵ

ே

ߦ ௜


