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Maximal

Margin Linear
Separators
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- The margin of a linear separator is the distance between it

and the nearest training data point

* Questions:

1. How can we efficiently find a maximal-margin linear

separator?

2. Why are linear separators with larger margins better?

3. What can we do if the data is not linearly separable?



Hyperplanes
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* For linear models, decision boundaries are D-dimensional

hyperplanes defined by a weight vector, [b, w]
wix+b=0

* Problem: there are infinitely many weight vectors that

describe the same hyperplane
* X1 +2x, + 2 = 0isthe same line as
2x1 + 4x, + 4 = 0, which is the same line as
1000000x; + ZOOOOOOxZ + ZOOOOOO =0
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. N NN
* Given a dataset D = {(x(‘),y(‘))}izl wherey € {—1, +1},
y = sign(wa + b) is a valid linear separator if

y(i)(wa(i) + b) >0V (x(i),y(i)) eED

NOrma“Zing ‘F6( S\“V\S | M\\\/ CGI\S.V‘er ((\ “
T. s
)-\ Z)/— Stj (wﬂ((‘\ -\-\33 (“017’0\3 6" X ‘*5)‘ \S

€ ’7‘1, 5" (wx ‘)-\—L» -‘L = ? st
\,/\:‘_Stsr\(/xc\“'\"\ 5 )‘{

Hyperplanes

Henry Chai - 3/21/22 6



Normalizing

Hyperplanes:
Example

- (07( G)+ o(,((b\ L)
Henry Chai - 3/21/22 |< H ok G-2)=07T '



Computing the

Henry Chai - 3/21/22

- Claim: w is orthogonal to the hyperplane w'x + b = 0

(the decision boundary)

* A vector is orthogonal to a hyperplane if it is orthogonal to

every vector in that hyperplane

- Vectors a and f8 are orthogonal if a’ 8 = 0

* Proof:

let x' I X! bk '&L.Jo mL"\’my 0)0«‘145 on

w \ar\ATX-\'B =0 =) X"ﬂ ™ “&{ap

; 26\ \JTX“’\O:'O
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- Claim: w is orthogonal to the hyperplane wx + b = 0

(the decision boundary)

A vector is orthogonal to a hyperplane if it is orthogonal to

every vector in that hyperplane

Computing the - Vectors @ and B are orthogonal if a” B = 0

Margin
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- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

* The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x' onto

Computlng the the unit vector orthogonal to the hyperplane

Iwll2’

Margin
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- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

* The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x' onto
Computlng the the unit vector orthogonal to the hyperplane
Margin w o ex
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- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point
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Margin
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Computing the

Margin
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- Let x' be an arbitrary point on the hyperplane

h(x) = wlx + b = 0 and let x” be an arbitrary point

* The distance between x” and h(x) = wlx + b = 0 is equal

to the magnitude of the projection of x” — x’ onto TR
2

the unit vector orthogonal to the hyperplane
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* The margin of a linear separator is the distance between it and
the nearest training data point
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Margin
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Maximizing the

Margin

Henry Chai - 3/21/22

( _f\

Maximize 1 w\\ T [uTw
s+t M:‘f\ (\(\d ('X(J“'L\ — \

mMi () Wl (x -
(vc“n‘\\G)/ (WTx +L> )

MiOLNLER WwTw

Sk yt‘\(w‘fx“‘ +h)y=| V (7<<0/>,(<\> €D

15



Maximizing the

Margin
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R
minimize EW w

subject to yD(wlx® +p) > 1v (x®,yD) e D

° If [B, vTI] is the optimal solution, then 3 at least one training

data point (x,y®) € D s.t\l(") (WTx® +b) =1

* All training data points (x(i),y(i)) € D where

yO(WTx® + b) = 1 are known as support vectors

—_

* Converting the non-linear constraint (involving the min) to

N linear constraints means we can use quadratic

programming (QP) to solve this problem in 0(D3) time
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* Define a model and model parameters

* Assume a linear decision boundary (with

normalized weights)
h(x) =wix+b=0

* Parameters: w = |[wy, ...,wp| and b

* Write down an objective function (with constraints)

R
minimize EW w

subject to yO(wlx® +p) = 1v (xD,yD) e D

- Optimize the objective w.r.t. the model parameters

* Solve using quadratic programming

17



Why Maximal

Margins?
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* Consider three binary data points in a bounded 2-D space

* Let H = {all linear separators} and

H,= {all linear separators with minimum margin p}

18



Why Maximal

Margins?
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* Consider three binary data points in a bounded 2-D space

- H = {all linear separators} can always correctly classify any

three (non-colinear) data points in this space

19



* Consider three binary data points in a bounded 2-D space

* H,, = {all linear separators with minimum margin p} cannot

always correctly classify three non-colinear data points

Why Maximal Tt s - -
P I
+”#

Margins?

+ + -
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Summary

Thus Far
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- The margin of a linear separator is the distance between it

and the nearest training data point

* Questions:

1. How can we efficiently find a maximal-margin linear
separator? By solving a constrained quadratic

optimization problem using quadratic programming

2. Why are linear separators with larger margins

better? They’re simpler *waves hands*

3. What can we do if the data is not linearly

separable? Next!
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Linearly

Inseparable
Data

- What can we do if the data is not linearly separable?
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R
minimize EW w

subject to yO(wlx® +b) =1V (xD,yD) e D

* When D is not linearly separable, there are no feasible

solutions to this optimization problem
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Hard-margin

SVMs
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R
minimize EW w

subject to yO(wlx® +b) =1V (xD,yD) e D

* When D is not linearly separable, there are no feasible

solutions to this optimization problem
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Soft-margin

SVMs
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N

1 .

minimize EWTW + C z gw
i=1

subject to y P (wlx® +p) =1 -0 v (x0,yD) eD

£D > vie{l,.. N}
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Soft-margin

SVMs

Henry Chai - 3/21/22

N
minimize leW +Cc )y &@
2 A 20
i=1
subjectto v\ (w' x4+ h) >1-E0 v (x,yD) eD

£D >0 Vie{l,.. N}
- £W js the “soft” error on the i training data point

- 1f 0 > 1, then y(i)(wa(i) + b) <0 =
(x©,y®Yis incorrectly classified
“1f0 < §W < 1, then y(i)(wa(i) + b) >0 =

(x(i), y(i)) is correctly classified but inside the margin
N

° Z Sdl) is the “soft” training error
i=1
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Soft-margin

SVMs
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1
. (;z 0 e
minimize W Tw + ¢ Y

subject to y(‘) (w x(‘) + b) >1-¢Wy (x(‘) y(l)) €D
5(1)20 vie{l,.. N}

—

- Still solvable using quadratic programming

* All training data points (x(i),y(i)) € D where

yO(WTx® + b) < 1 are known as support vectors

W: 7[0, Z\«rJ- ijm
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Interpreting &V
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Interpreting &V
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Interpreting & ()
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Interpreting &V
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Interpreting &V
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Smaller C

Setting C

Larger C Hard Margin

C is a tradeoff parameter (much like
the tradeoff parameter in

regularization)
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