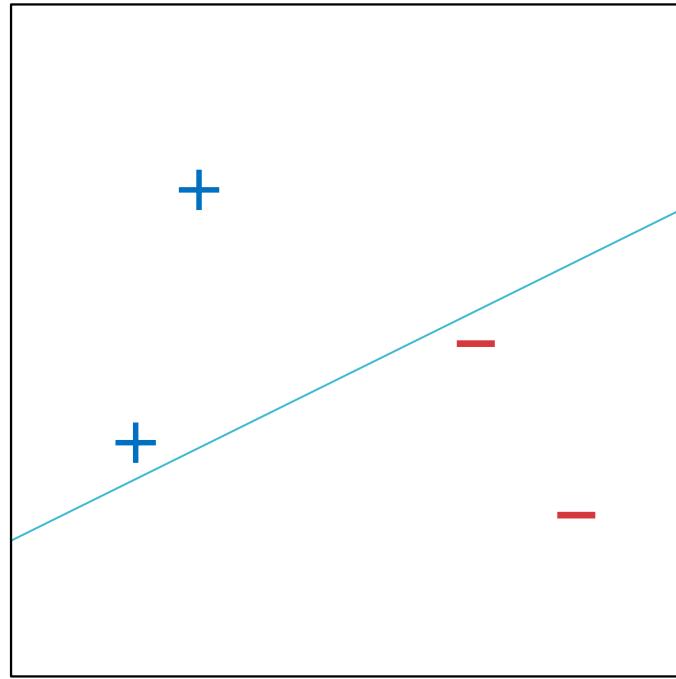
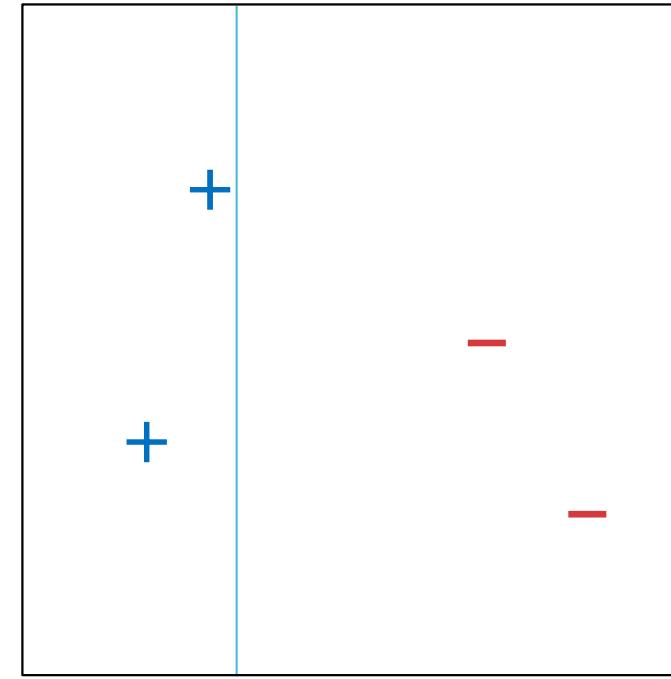
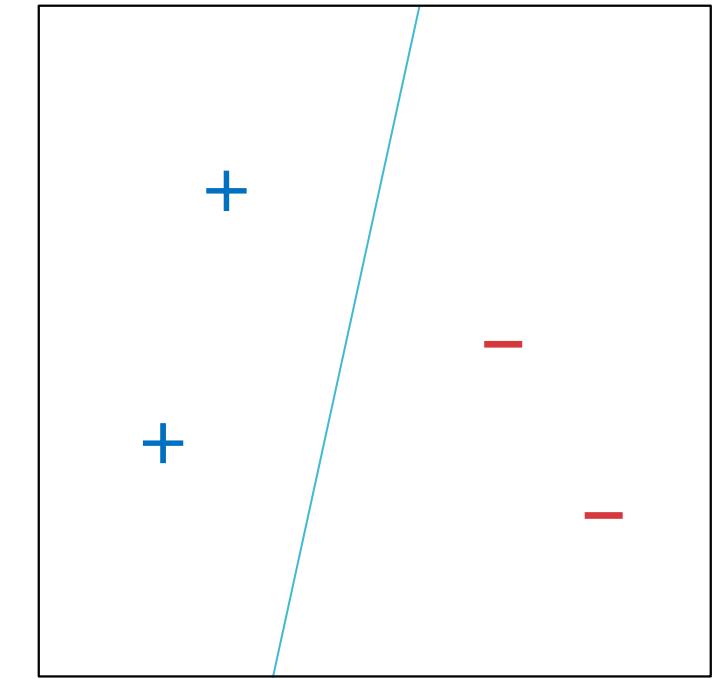


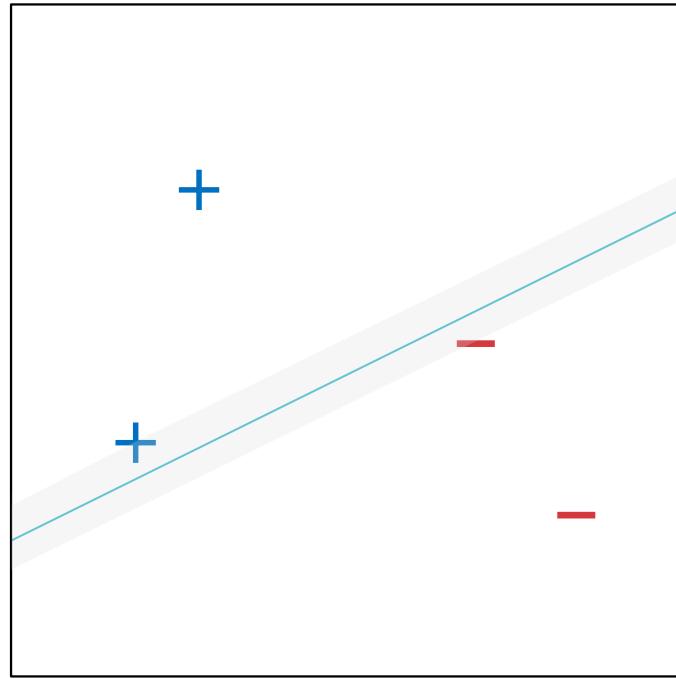
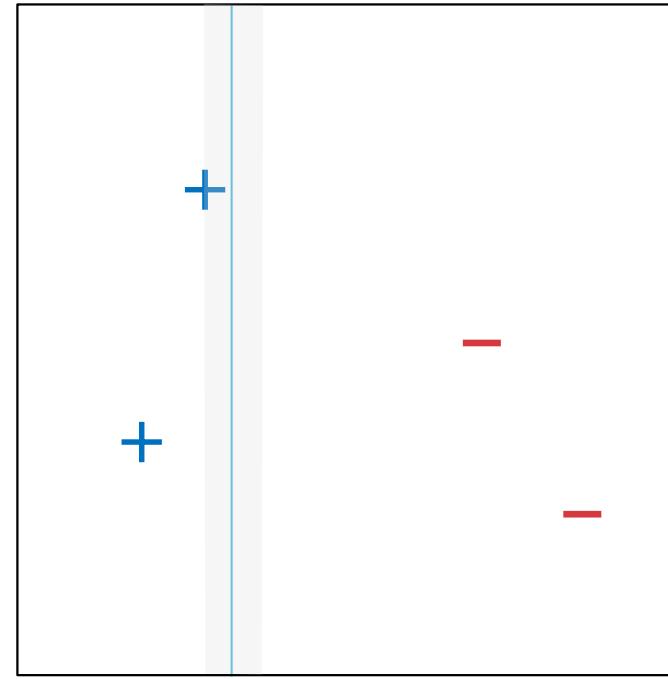
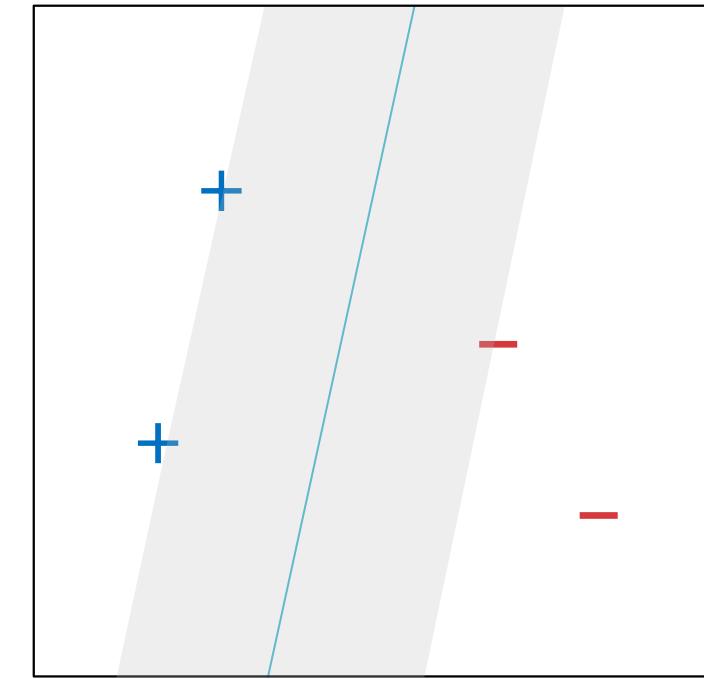
10-315: Introduction to Machine Learning Lecture 15 – Support Vector Machines

Henry Chai

3/21/22



Which linear separator is best?



Which linear separator is best?

Maximal Margin Linear Separators

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
 1. How can we efficiently find a maximal-margin linear separator?
 2. Why are linear separators with larger margins better?
 3. What can we do if the data is not linearly separable?

Hyperplanes

- For linear models, decision boundaries are D -dimensional **hyperplanes** defined by a weight vector, $[b, \mathbf{w}]$

$$\mathbf{w}^T \mathbf{x} + b = 0$$

- Problem: there are infinitely many weight vectors that describe the same hyperplane
 - $x_1 + 2x_2 + 2 = 0$ is the same line as $2x_1 + 4x_2 + 4 = 0$, which is the same line as $1000000x_1 + 2000000x_2 + 2000000 = 0$

*Solution: normalize the weight vectors
w.r.t. training data set*

Normalizing Hyperplanes

- Given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ where $y \in \{-1, +1\}$,
 $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ is a valid linear separator if
 $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0 \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$

For SVMs, only consider

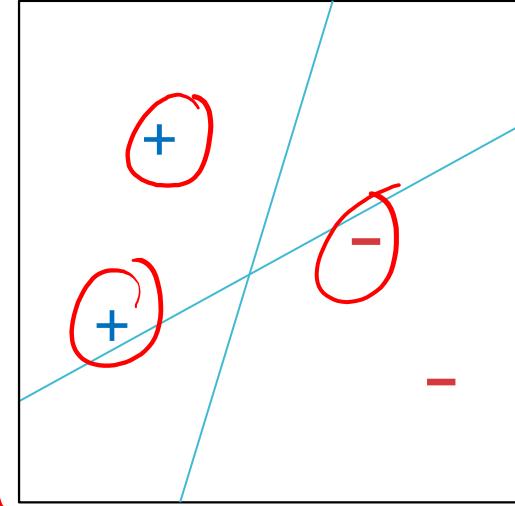
$$\mathcal{H} = \left\{ \hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x}^{(i)} + b) : \min_{(x^{(i)}, y^{(i)})} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) = 1 \right\}$$

if $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x}^{(i)} + b)$, then $\exists \mathcal{P}$ s.t.

$$\hat{y} = \text{sign}\left(\frac{\mathbf{w}^T}{P} \mathbf{x}^{(i)} + \frac{b}{P}\right) \in \mathcal{H}$$

Normalizing Hyperplanes: Example

b	w_1	w_2	
-0.2	-0.6	1	$\notin \mathcal{H}$
-0.4	-1.2	2	$\notin \mathcal{H}$
-2	-6	10	$\notin \mathcal{H}$
-10	-30	50	$\in \mathcal{H}$
0.2	-0.6	0.2	$\notin \mathcal{H}$
0.1	-0.3	0.1	$\notin \mathcal{H}$
1	-3	1	$\notin \mathcal{H}$
2	-6	2	$\in \mathcal{H}$



x_1	x_2	y	$y(w^T x + b)$
0.2	0.4	+1	1.6
0.3	0.8	+1	1.8
0.7	0.6	-1	1
0.8	0.3	-1	2.2

$$\begin{aligned}
 -1(0.7(-6) + 0.6(10) - 2) \\
 -1(-4.2 + 6 - 2) = 0.2
 \end{aligned}$$

Computing the Margin

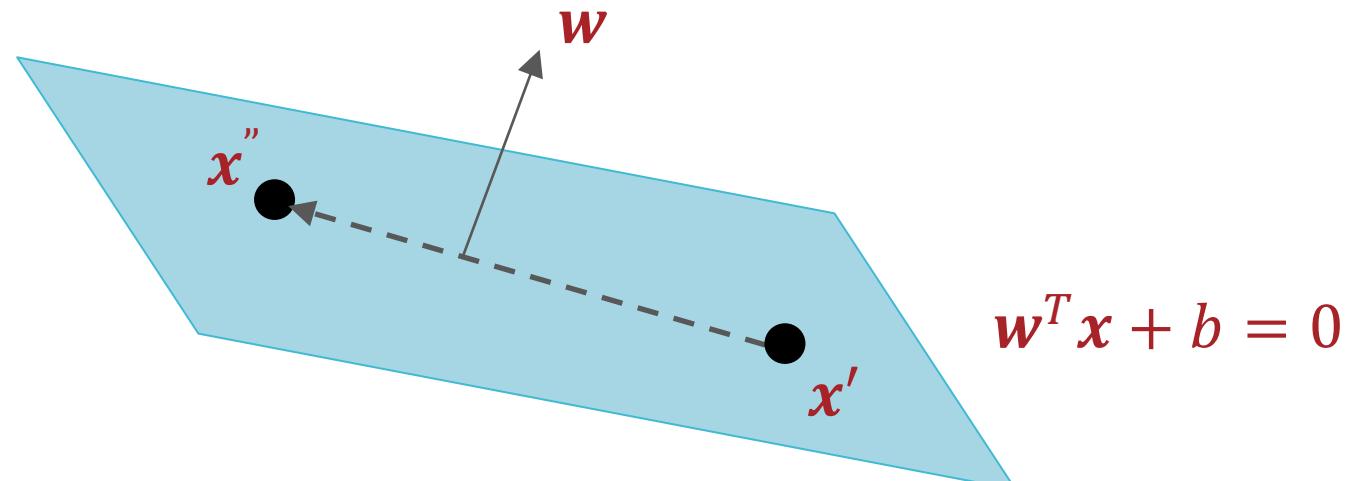
- Claim: w is orthogonal to the hyperplane $w^T x + b = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- Vectors α and β are orthogonal if $\alpha^T \beta = 0$
- Proof:

Let x' and x'' be two arbitrary points on $w^T x = -b \leftarrow w^T x + b = 0 \Rightarrow x' - x''$ is a vector on $w^T x + b = 0$

$$w^T(x' - x'') = w^T x' - w^T x''$$
$$= (-b) - (-b) = 0 \quad \blacksquare$$

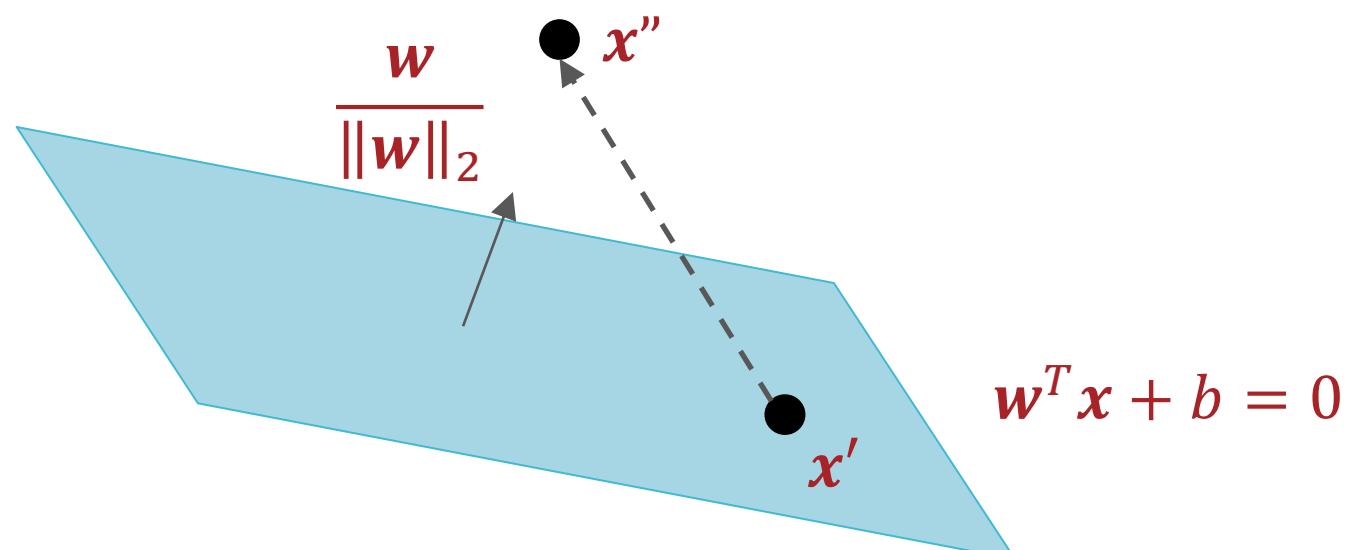
Computing the Margin

- Claim: \mathbf{w} is orthogonal to the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- Vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are orthogonal if $\boldsymbol{\alpha}^T \boldsymbol{\beta} = 0$



Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



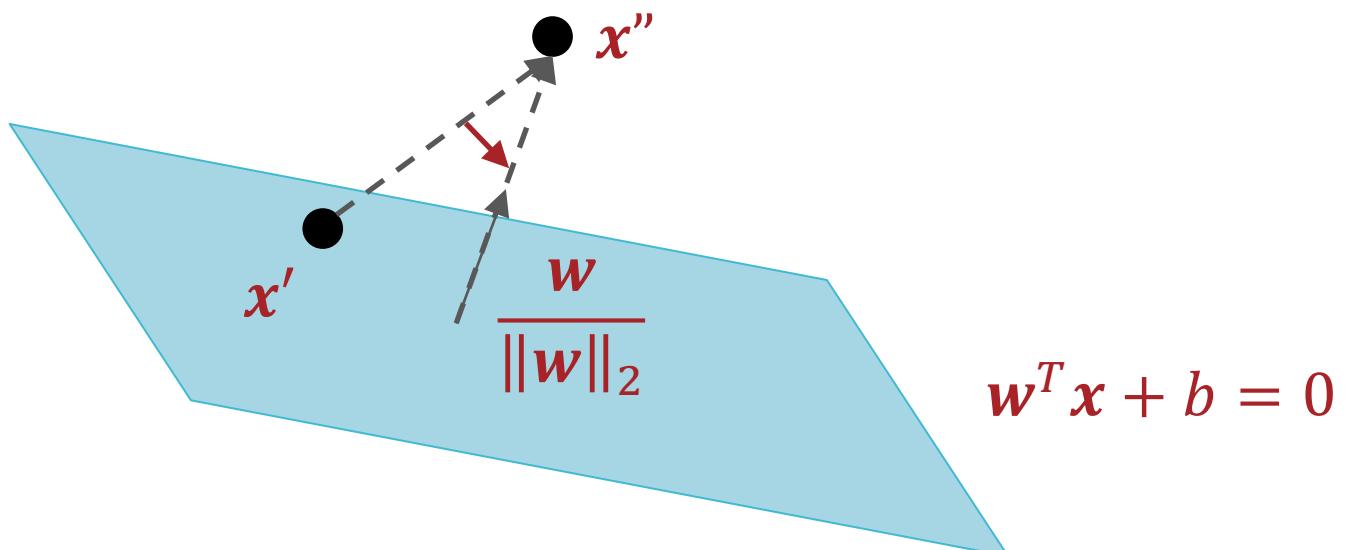
Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



Computing the Margin

- Let \mathbf{x}' be an arbitrary point on the hyperplane $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane

$$\begin{aligned}d(\mathbf{x}'', h) &= \left| \frac{\mathbf{w}^T(\mathbf{x}'' - \mathbf{x}')} {\|\mathbf{w}\|_2} \right| = \left| \frac{\mathbf{w}^T \mathbf{x}'' - \mathbf{w}^T \mathbf{x}'} {\|\mathbf{w}\|_2} \right| \\&= \left| \frac{\mathbf{w}^T \mathbf{x}'' - (-b)} {\|\mathbf{w}\|_2} \right| = \left| \frac{\mathbf{w}^T \mathbf{x}'' + b} {\|\mathbf{w}\|_2} \right|\end{aligned}$$

Computing the Margin

- The margin of a linear separator is the distance between it and the nearest training data point

$$\min_{(x^{(i)}, y^{(i)}) \in D} d(x^{(i)}, h) = \min_{(x^{(i)}, y^{(i)}) \in D} \left| \frac{w^T x^{(i)} + b}{\|w\|_2} \right|$$

$$= \frac{1}{\|w\|_2} \min_{(x^{(i)}, y^{(i)}) \in D} |w^T x^{(i)} + b|$$

$$= \frac{1}{\|w\|_2} \min_{(x^{(i)}, y^{(i)}) \in D} y^{(i)} (w^T x^{(i)} + b)$$

$$= \frac{1}{\|w\|_2}$$

Maximizing the Margin

$$\text{maximize} \quad \frac{1}{\|w\|_2} = \frac{1}{\sqrt{w^T w}}$$

$$\text{s.t.} \quad \min_{(x^{(i)}, y^{(i)}) \in D} y^{(i)}(w^T x^{(i)} + b) = 1$$

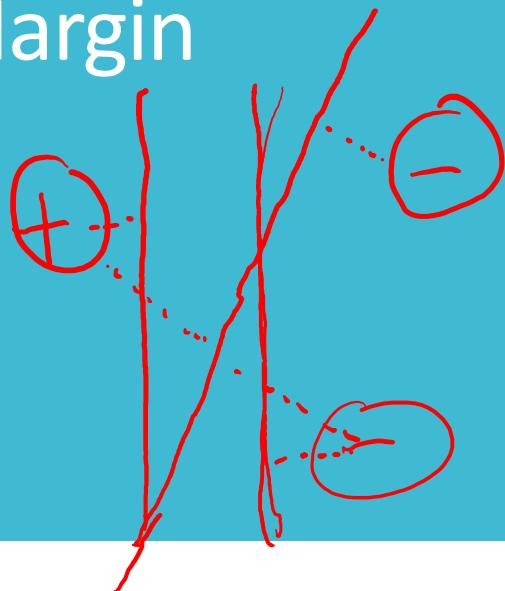
$$\text{minimize} \quad w^T w$$

$$\text{s.t.} \quad \min_{(x^{(i)}, y^{(i)}) \in D} y^{(i)}(w^T x^{(i)} + b) = 1$$

$$\text{minimize} \quad w^T w$$

$$\text{s.t.} \quad y^{(i)}(w^T x^{(i)} + b) \geq 1 \quad \forall (x^{(i)}, y^{(i)}) \in D$$

Maximizing the Margin



$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

- If $[\hat{b}, \hat{\mathbf{w}}]$ is the optimal solution, then \exists at least one training data point $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ s.t $y^{(i)} (\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b}) = 1$
 - All training data points $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)} (\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b}) = 1$ are known as *support vectors*
- Converting the non-linear constraint (involving the \min) to N linear constraints means we can use quadratic programming (QP) to solve this problem in $O(D^3)$ time

Recipe for SVMs

- Define a model and model parameters
 - Assume a linear decision boundary (with normalized weights)
$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$
 - Parameters: $\mathbf{w} = [w_1, \dots, w_D]$ and b
 - Write down an objective function (with constraints)
$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$
- Optimize the objective w.r.t. the model parameters
 - Solve using quadratic programming

Why Maximal Margins?

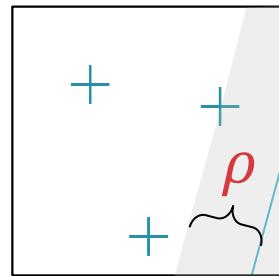
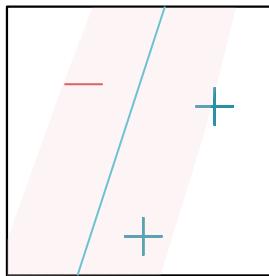
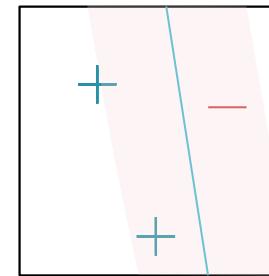
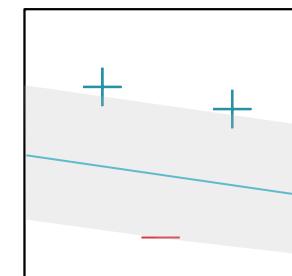
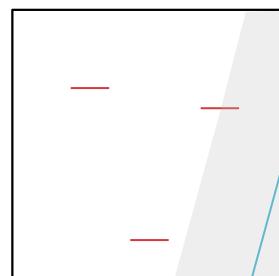
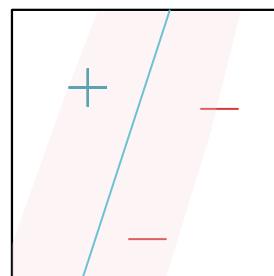
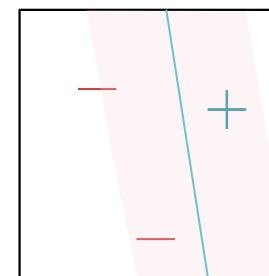
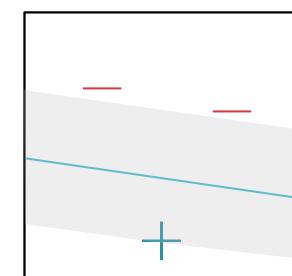
- Consider three binary data points in a **bounded** 2-D space
- Let \mathcal{H} = {all linear separators} and
 \mathcal{H}_ρ = {all linear separators with minimum margin ρ }

Why Maximal Margins?

- Consider three binary data points in a bounded 2-D space
- \mathcal{H} = {all linear separators} can always correctly classify any three (non-colinear) data points in this space

Why Maximal Margins?

- Consider three binary data points in a bounded 2-D space
- $\mathcal{H}_\rho = \{\text{all linear separators with minimum margin } \rho\}$ cannot always correctly classify three non-collinear data points



Summary Thus Far

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
 1. How can we efficiently find a maximal-margin linear separator? **By solving a constrained quadratic optimization problem using quadratic programming**
 2. Why are linear separators with larger margins better? **They're simpler *waves hands***
 3. What can we do if the data is not linearly separable? **Next!**

Linearly Inseparable Data

- What can we do if the data is not linearly separable?

- 1. Accept some non-zero training error
today
- 2. Apply some feature transformation
later that makes your data linearly
separable

SVMs

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

- When \mathcal{D} is not linearly separable, there are no feasible solutions to this optimization problem

Hard-margin SVMs

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \end{aligned}$$

- When \mathcal{D} is not linearly separable, there are no feasible solutions to this optimization problem

Soft-margin SVMs

$$\begin{aligned} & \text{minimize} && \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)} \\ & \text{subject to} && y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi^{(i)} \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \\ & && \xi^{(i)} \geq 0 \quad \forall i \in \{1, \dots, N\} \end{aligned}$$

Soft-margin SVMs

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)} \quad \downarrow \geq 0 \\ & \text{subject to} \quad y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi^{(i)} \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \\ & \quad \xi^{(i)} \geq 0 \quad \forall i \in \{1, \dots, N\} \end{aligned}$$

- $\xi^{(i)}$ is the “soft” error on the i^{th} training data point
 - If $\xi^{(i)} > 1$, then $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) < 0 \Rightarrow (\mathbf{x}^{(i)}, y^{(i)})$ is incorrectly classified
 - If $0 < \xi^{(i)} < 1$, then $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0 \Rightarrow (\mathbf{x}^{(i)}, y^{(i)})$ is correctly classified but inside the margin
- $\sum_{i=1}^N \xi^{(i)}$ is the “soft” training error

Soft-margin SVMs

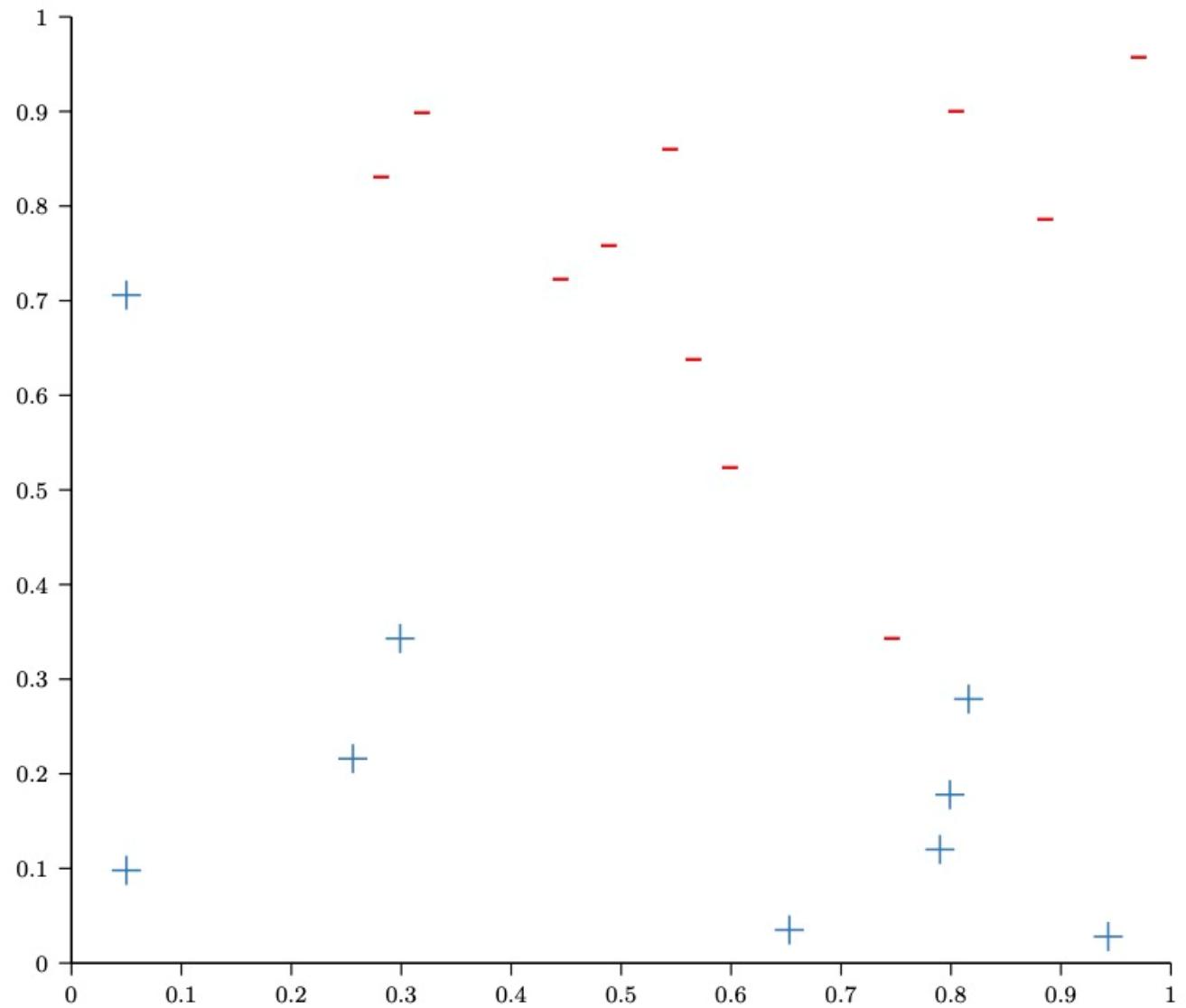
$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)} \quad \xi^{(i)} = 0 \\ & \text{subject to} \quad \underbrace{y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi^{(i)}}_{\xi^{(i)} \geq 0} \quad \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D} \\ & \quad \quad \quad \forall i \in \{1, \dots, N\} \end{aligned}$$

- Still solvable using quadratic programming
- All training data points $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ where

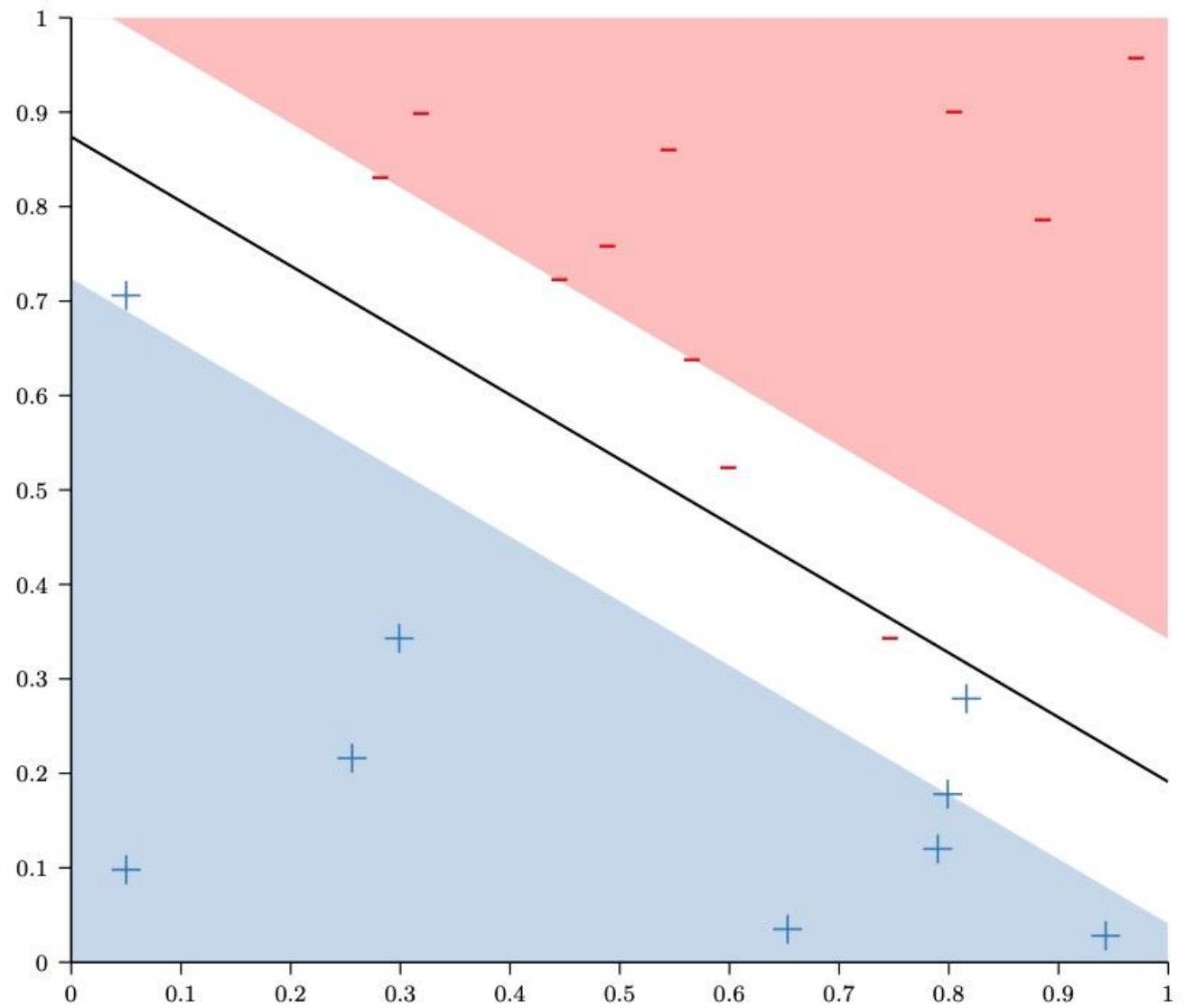
$y^{(i)}(\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b}) \leq 1$ are known as *support vectors*

$\hat{\mathbf{w}}^T \mathbf{x}^{(i)} + \hat{b} = f$ for hard-margin

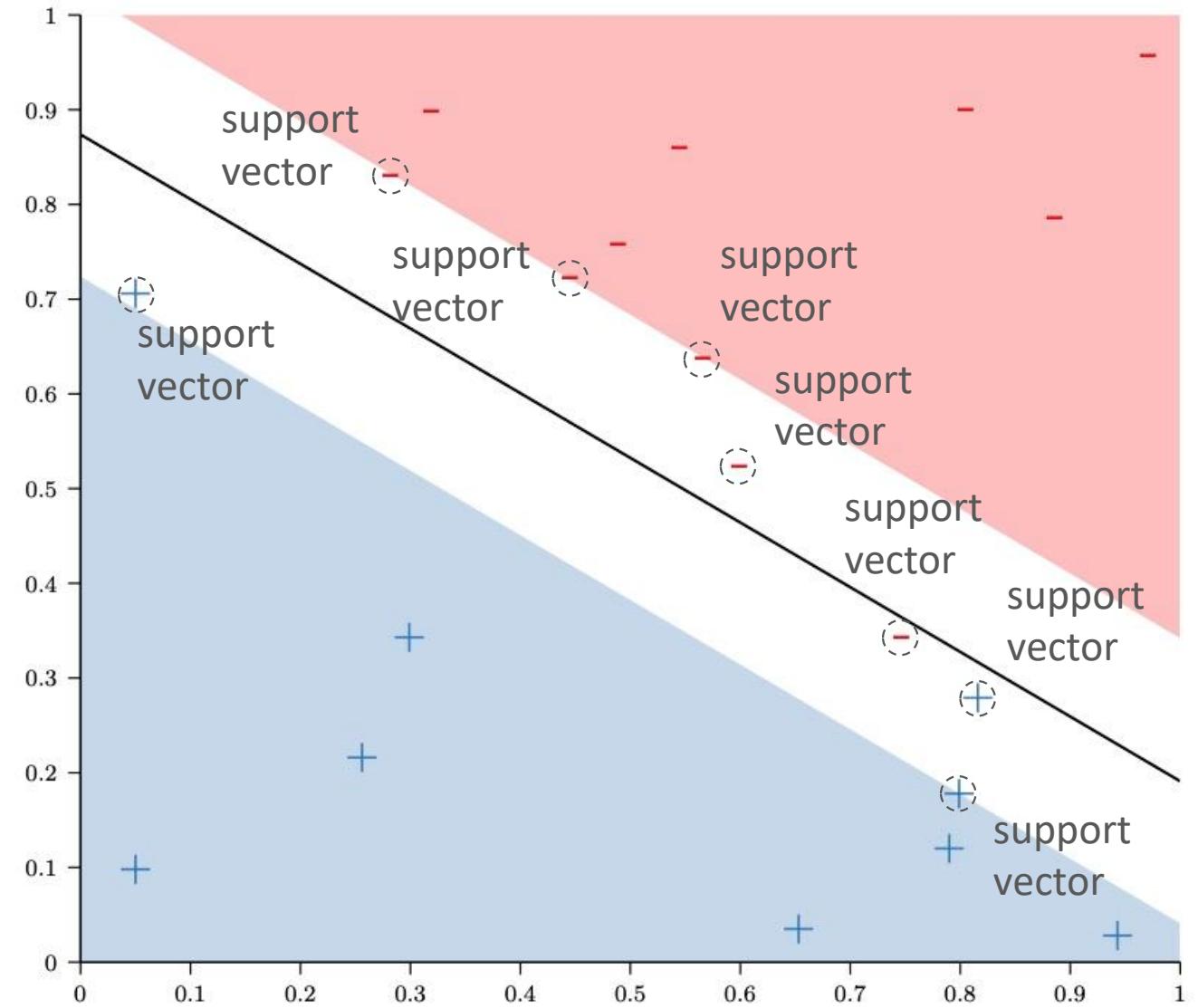
Interpreting $\xi^{(i)}$



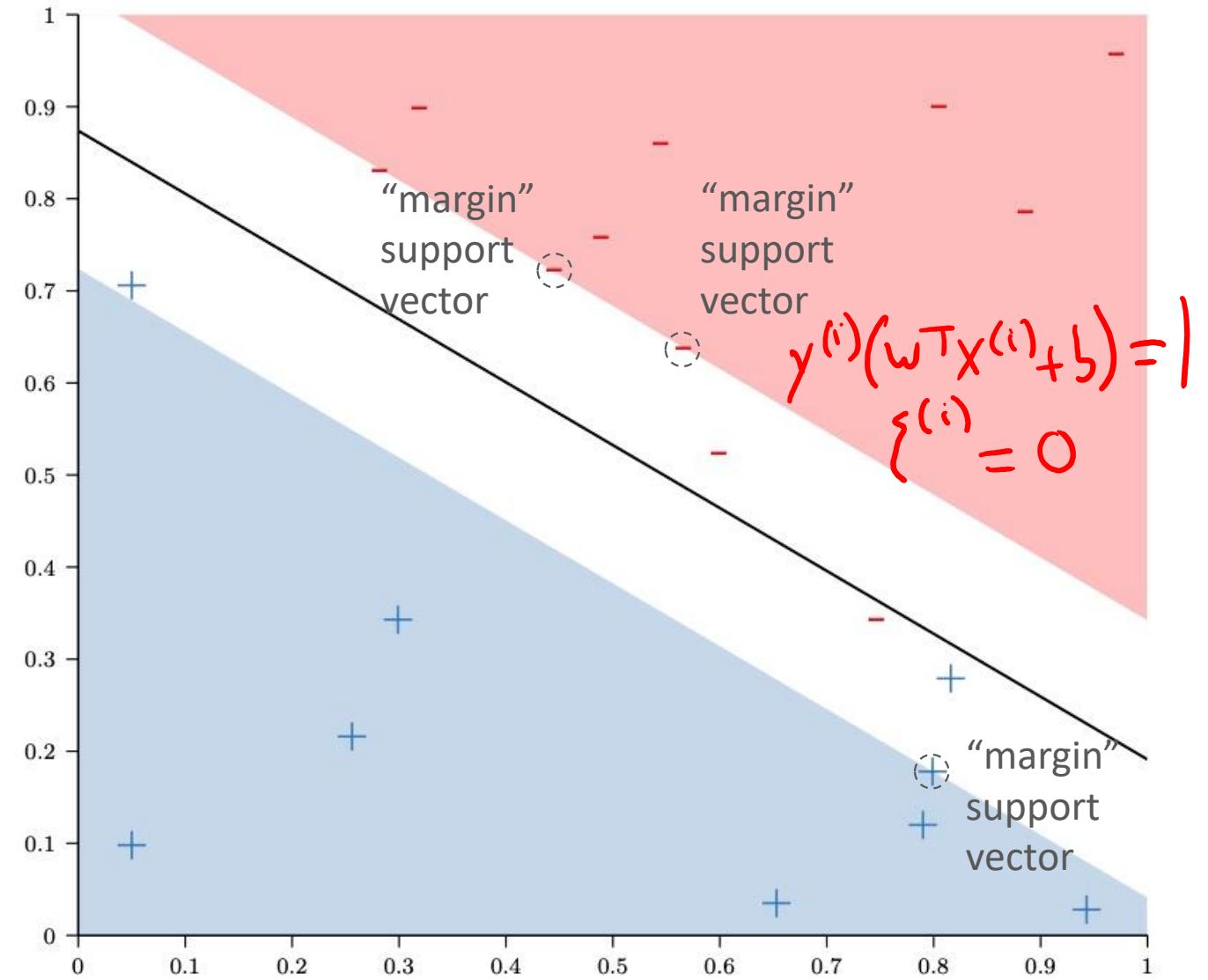
Interpreting $\xi^{(i)}$



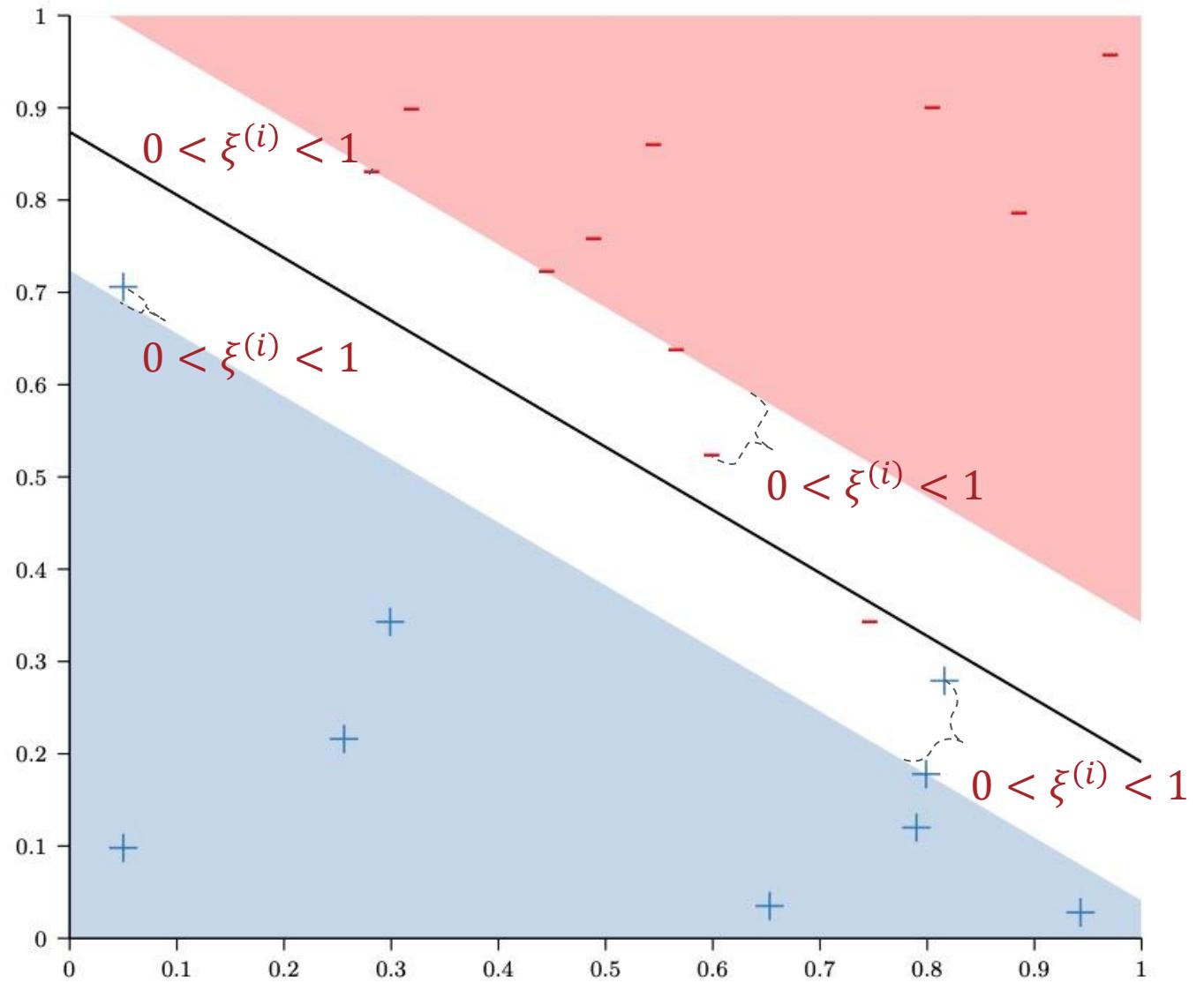
Interpreting $\xi^{(i)}$



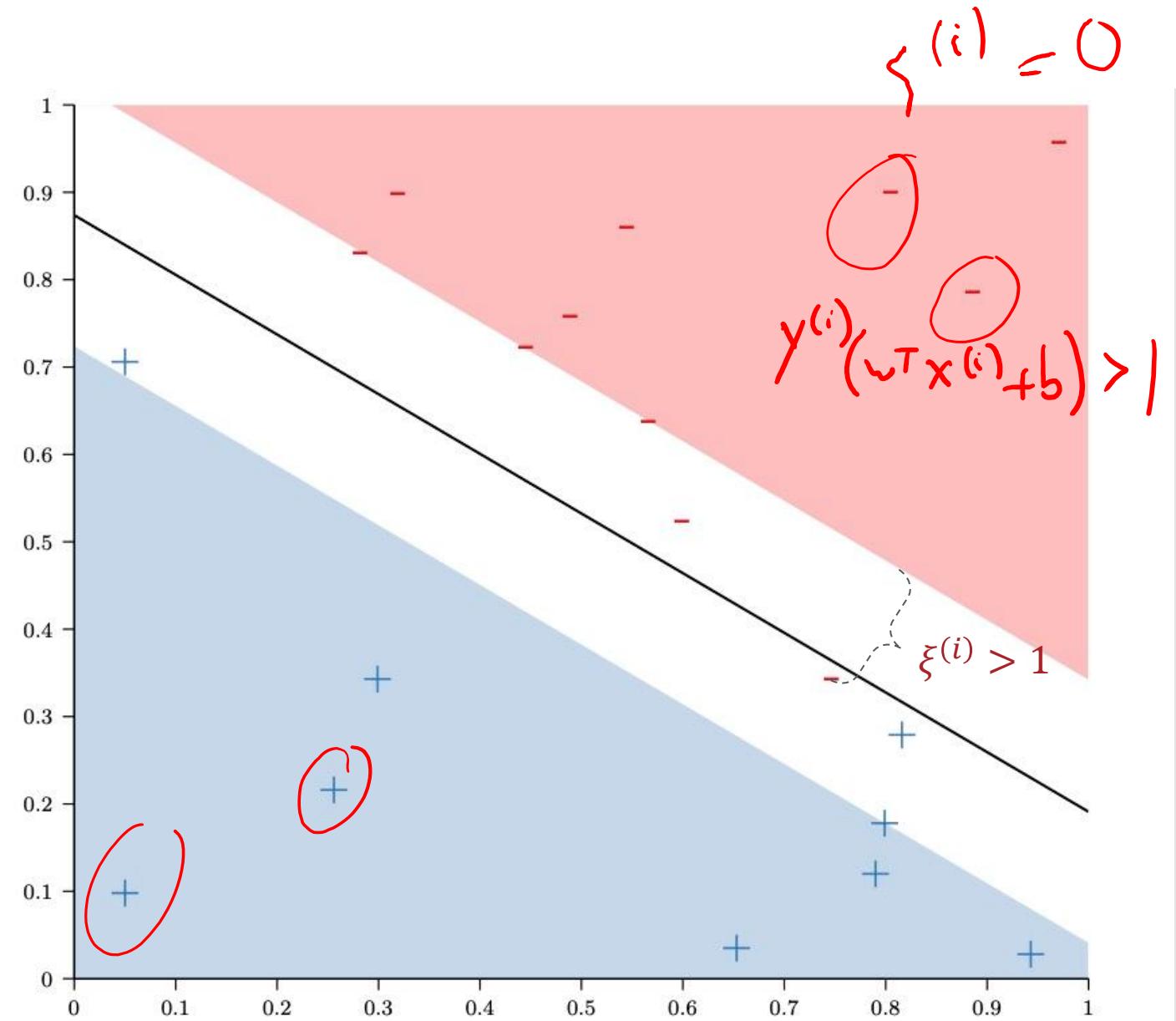
Interpreting $\xi^{(i)}$

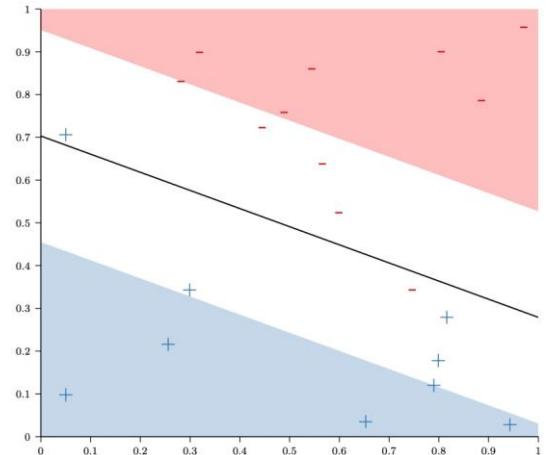


Interpreting $\xi^{(i)}$

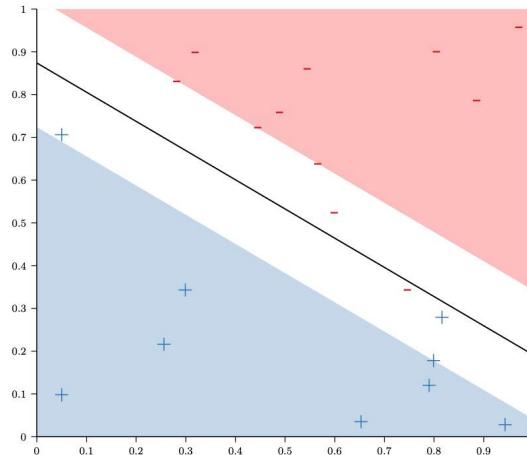


Interpreting $\xi^{(i)}$

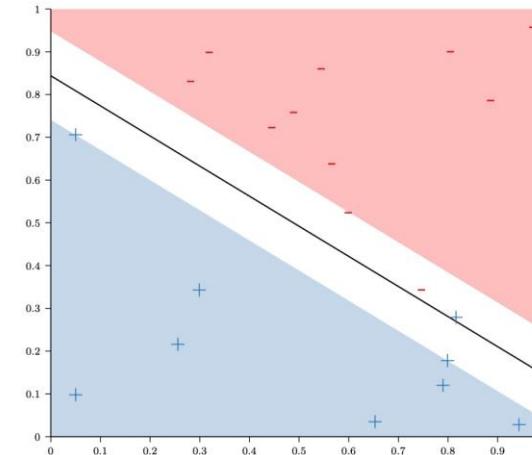




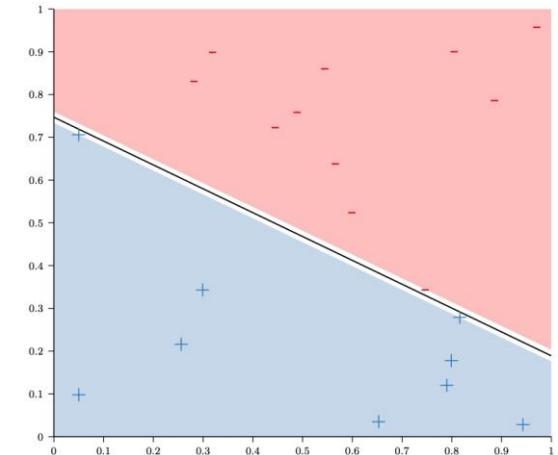
Smaller C



$$\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi^{(i)}$$



Larger C



Hard Margin

Setting C

C is a tradeoff parameter (much like the tradeoff parameter in regularization)