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* (Univariate) Gaussians:
x ~N(;u=00%=1)

* Multivariate Gaussians:



* Closure under linear transformations:
If X ~ NV (x; i, Z),
thenCX +b ~ N(Ci + b, CzCT)

Some fun
facts about

* Closure under addition
IfX ~N(X;4,X) andy ~ N (y;m,S),
thenx+y~N({@E+m2+S)

CENNNERS

* Closure under conditioning:

12 =[]~ (L Lol 55 5i2])

then x;|x; = ¢ ~ N (xg; g + 212255 (€ — ), 211 — 212252 221)
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Some old Gaussian process =

friends

Bayesian linear regression + Kernels
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Some old Gaussian process =

friends

Bayesian linear regression + Kernels
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* If we assume a linear model with additive Gaussian noise

Recall: MAP for ¥ = AB + € where € ~ N(0,, 02I,,) = ¥ ~ N(AB, 021,)

Linear and a Gaussian prior on the weights...
Regression

- — 0-2 - 1 >0 2
(B T lpen) = p(B) s (- 557 A7)
* ... then, the MAP ofﬁ is the ridge regression solution!

EMAP = argmin (AE - ﬁ)T(Aﬁ - 37) T AB)TE
B

= (ATA + AL,,) AT
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- Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:

Bayesian

Linear

Regression " then,

¥ = AB + € where € ~ N(())n, o?l,) and B~ N(6p+1, %)

y ~ N(AOp4q + 0y, AZAT + 021,)
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- Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:

Bayesian

Linear

Regression " then,

y = AR + € where € ~ N(ﬁn, o?l,) and B~ N(6p+1, %)
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- Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:

Bayesian

Linear

Regression " then,

¥ = AB + € where € ~ N(Gn, o2l,) and B~ N(6p+1, %)
Bl _n 011 [ ) 227? ]
¥ g, |'1?2?? AZAT + 0%,

- Covariance between § and 3:

Cov(§,8) = Cov(AB + € B) = Cov(4B, B) = ACov(B, ) = A
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Bayesian
Linear
Regression
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
v = AB + € where € ~ N(ﬁn, o?l,) and B~ N(6p+1, %)

* then,

E ~ N 6p+1 [Z AT ]
¥ 0. |'l1AL AZA" + 0%,

- Covariance between  and §:

Cov(§,8) = Cov(AB + € ) = Cov(4B, B) = ACov(B, ) = A
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
¥ = AB + € where € ~ N(0,, 0%I,,) and § ~ N(0,.1,2)
* then,
B19 ~ N(iipost) Zposr)
where

fipost = ZAT(AZA" + o2L,)™ 1y,
Ypost = = — ZAT(AZAT + ¢21,)1AX
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Bayesian
Linear
Regression
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
¥ = AB + € where € ~ N(6n, o?l,) and B~ N(6p+1, %)
- then given a new test data point xX*, the prediction is

fly ~N (x UposT) X" ZposTX )

where

fpost = AT (AZA" + o%1,)™ 1y,
Ypost = = — ZAT(AZAT + 021,)1AX
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = AR + € where € ~ N(())n, o?l,) and B~ N(6p+1, %)
- then given a new test data point x*, the prediction is
*x1 = —>*T = o -
vly =x" B |y ~ N(liprep, ZprED)

where

fprep = ¥ TAT(AZAT + 021,71,

S prpp = X Sx* — 2% TAT(AZAT + 021) "1 A3
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friends
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(Gaussian process =

Bayesian linear regression + Kernels
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(Gaussian process =

Bayesian linear regression + Kernels
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Bayesian
Linear
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
v = AB + € where € ~ N(ﬁn, o?I,) and B~ N(6p+1, %)
- then given a new test data point x*, the prediction is
*x1 = —>*T = > -
vy =x"" B |y ~ N(liprep, ZprED)

where

fiprep = ¥ TAT(AZAT + 021,71,

S prpp = X Zx* — 2% TAT(AZAT + 621)"1ATR"
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Bayesian
Linear
Regression can
be kernelized!

1 pG)T
o—|l $GE)

1 ¢
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* Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:
y = CI)E + € where € ~ N(6n, azln) and ﬁ ~ N(6p1+1, Z)
- then given a new test data point x*, the prediction is
vy = (&) B |Y ~ N(iprep, ZprED)
where
fprep = P(X*)TEZDT(DPZDT + 041,) 71y,

2:PRED
= (X)) (X*) — d(X)TZPT(PZTDT + 0%1,) 1 DZP (%)
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Bayesian
Linear
Regression can
be kernelized!

1 GG
o—|1 $GT

1 ¢
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®f + € where €~ N(0,, 02I,) and f ~ N(0,/,1, %)
- then given a new test data point x*, the prediction is
vy = Gb(??*)TE |y ~ N(ipreD, LPRED)
where
lUppep = @ED)TERT (PEDT +077,) 'y,

Z:PRED
= pGE)TZP(E*) — d(X)TZPT(DZDT + 571,,) ' DPTP(X*)

* Define the kernel function to be

K@% = ¢ Zp(X)
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Bayesian
Linear
Regression can
be kernelized!
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = CI)E + € where € ~ N(6n, azln) and ﬁ ~ N(6p,+1, Z)

- then given a new test data point x*, the prediction is
v*|¥ ~ N(liprep, ZpRED)
where

lprep = K(X*, A)(K(A,A) + o%1,)" 1y,
Yppep = K(X*,%*) — K(¥*,A)(K(4,A) + 0%L) 'K (4, x*)

* Define the kernel function to be

K& 2) =¢@) 2p(x")
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

Wait, what = ®f + € where € ~ N(On, o?l,) and B~ N(Op 11 2)
happened to
the weights?

- then given a new test data point x*, the prediction is
v*|Y ~ N(fiprep, ZpRED)
where

lprep = K(X*, A)(K(4,4) + a21,)™1
Sprep = K(X%5,X") — K(X*,A)(K(A,A) + 0%1,) " K (4, X*)

* Define the kernel function to be

KX x") = ¢ Zp(X")
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Some old

friends
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Gaussian process =

Bayesian linear regression + Kernels
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A new

perspective
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Gaussian process =

The extension of a Gaussian

distribution to functions
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* (Univariate) Gaussians:
x ~N(x;u=00%=1)

* Multivariate Gaussians:
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Process (GP)
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fiRP > R~ GP(f;ulx) ,2(x,x")

—— Mean 1+2 Standard Deviations

X

f~GPW2) = fx) ~ N (u(x), 2(x, x))
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* (Univariate) Gaussians:
x ~N(x;u=00%=1)
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CEINSELR

Process (GP)
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fiRP > R~ GP(f;u(x) = 0,2(x,x") = exp(—(x —x")%))

K

—— Samples — Mean  C33+42 Standard Deviations

==

X

f~GPW2) = fx) ~ N (u(x), 2(x, x))
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fiRP = R~ GP(f; u(x) = 0,2(x,x") = exp(~|x — x']))

—— Samples — Mean  C33+42 Standard Deviations

\
Gaussian ‘«(

#,v‘“‘mlwwuvt‘iv'lm ' A ; VA

X

f~GPW2) = fx) ~ N (u(x), 2(x, x))

Process (GP)
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GP Prior
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fiRP > R~ GP(f;u(x) = 0,2(x,x") = exp(—(x —x")%))

—— Mean 1+2 Standard Deviations
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GP Posterior
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f 1D~ GP(f; up, Zp)

oD = Data — Mean

1+2 Standard Deviations
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GP Posterior

Henry Chai - 4/18/22

f 1D~ GP(f; up, Zp)

—— Samples D = Data  —— Mean

1+2 Standard Deviations
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GP Posterior
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f 1D~ GP(f; up, Zp)

——Samples oD =Data —Mean  [3+2 Standard Deviations

fx®) ~N(pp(x*), Zp(x*, x*))

i ZB*
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Active

Learning
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®D = Data —— Mean 142 Standard Deviations

—
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Suppose you
can add one
data point to

®D = Data —— Mean 142 Standard Deviations

your training /
data. \f%\/

Which point
would you add
and why?
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f 1D~ GP(f; up, 2p)

Are G PS: ——Samples oD = Data ——Mean  [C3+£2 Standard Deviations
1. parametric or
nonparametric
2. generative or
discriminative
i
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GPs are

1. parametric or
nonparametric

2. generative or
discriminative
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f 1D~ GP(f; up, Zp)

—— Samples

oD = Data

— Mean

1+2 Standard Deviations
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Log-Likelihood of D:

log N(y; u(A),2(4,A)) = —6.82 log N(y; u(A),2(4,A)) = —8.26

X X

— »N)2 N2
f~97’<f: o,<12>exp(—(x = )) f~g?(f; o,<22)exp(_(x - ))

Kernel Hyperparameters
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