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Gaussians
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� (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎! = 1

� Multivariate Gaussians: lllllll

𝑥⃗ = 𝑥", … , 𝑥#
$

∼ 𝒩 𝑥⃗; 𝜇⃗ = 0#, Σ = 𝐼#



Some fun   
facts about 
Gaussians
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� Closure under linear transformations:

If 𝑥⃗ ∼ 𝒩 𝑥⃗; 𝜇⃗, Σ ,

then 𝐶𝑥⃗ + 𝑏 ∼ 𝒩 𝐶𝜇⃗ + 𝑏, 𝐶Σ𝐶$

� Closure under addition

If 𝑥⃗ ∼ 𝒩 𝑥⃗; 𝜇⃗, Σ and 𝑦⃗ ∼ 𝒩 𝑦⃗;𝑚, 𝑆 ,

then 𝑥⃗ + 𝑦⃗ ∼ 𝒩 𝜇⃗ +𝑚, Σ + 𝑆

� Closure under conditioning: 

If 𝑥⃗ =
𝑥"
𝑥! ∼ 𝒩

𝑥"
𝑥! ;

𝜇"
𝜇! , Σ"" Σ"!

Σ!" Σ!!
,

then 𝑥"|𝑥! = 𝑐 ∼ 𝒩 𝑥"; 𝜇" + Σ"!Σ!!%" 𝑐 − 𝜇! , Σ"" − Σ"!Σ!!%"Σ!"



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels
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Recall: MAP for 
Linear 
Regression 

� If we assume a linear model with additive Gaussian noise 

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0&, 𝜎!𝐼& → 𝑦⃗ ∼ 𝑁 𝐴𝛽, 𝜎!𝐼&
and a Gaussian prior on the weights…

𝛽 ~ 𝑁 0#'",
𝜎!

𝜆
𝐼#'" → 𝑝 𝛽 ∝ exp −

1
2𝜎!

𝜆𝛽$𝛽

� … then, the MAP of 𝛽 is the ridge regression solution!

𝛽()* = argmin
+

𝐴𝛽 − 𝑦⃗
$
𝐴𝛽 − 𝑦⃗ + 𝜆𝛽$𝛽

−. = 𝐴𝑻𝐴 + 𝜆𝐼#'"
%"𝐴$𝑦⃗
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𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then, 

𝑦⃗ ∼ 𝑁 𝐴0#$% + 0!, 𝐴Σ𝐴& + 𝜎"𝐼!

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then, 

𝑦⃗ ∼ 𝑁 0!, 𝐴Σ𝐴& + 𝜎"𝐼!

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Bayesian
Linear 
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then, 

𝛽
𝑦⃗
∼ 𝑁

0#$%
0!

, Σ ? ? ?
? ? ? 𝐴Σ𝐴& + 𝜎"𝐼!

� Covariance between 𝑦⃗ and 𝛽:

Cov 𝑦⃗, 𝛽 = Cov 𝐴𝛽 + 𝜖, 𝛽 = Cov 𝐴𝛽, 𝛽 = 𝐴Cov 𝛽, 𝛽 = 𝐴Σ

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Bayesian
Linear 
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then, 

𝛽
𝑦⃗
∼ 𝑁

0#$%
0!

, Σ Σ𝐴&
𝐴Σ 𝐴Σ𝐴& + 𝜎"𝐼!

� Covariance between 𝑦⃗ and 𝛽:

Cov 𝑦⃗, 𝛽 = Cov 𝐴𝛽 + 𝜖, 𝛽 = Cov 𝐴𝛽, 𝛽 = 𝐴Cov 𝛽, 𝛽 = 𝐴Σ

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then, 

𝛽|𝑦⃗ ∼ 𝑁 𝜇⃗'()&, Σ'()&

where

𝜇⃗'()& = Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝑦⃗,

Σ'()& = Σ − Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝐴Σ

� Covariance between 𝑦⃗ and 𝛽:

Cov 𝑦⃗, 𝛽 = Cov 𝐴𝛽 + 𝜖, 𝛽 = Cov 𝐴𝛽, 𝛽 = 𝐴Cov 𝛽, 𝛽 = 𝐴Σ

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"
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� Assume a linear model with additive Gaussian noise and a  
zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  

𝑦∗|𝑦⃗ = 𝑥⃗∗&𝛽 |𝑦⃗ ∼ 𝑁 𝑥⃗∗&𝜇⃗'()&, 𝑥⃗∗
&Σ'()&𝑥⃗∗

where

𝜇⃗'()& = Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝑦⃗,

Σ'()& = Σ − Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝐴Σ

� Covariance between 𝑦⃗ and 𝛽:

Cov 𝑦⃗, 𝛽 = Cov 𝐴𝛽 + 𝜖, 𝛽 = Cov 𝐴𝛽, 𝛽 = 𝐴Cov 𝛽, 𝛽 = 𝐴Σ

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Bayesian
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13Henry Chai - 4/18/22

� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  

𝑦∗|𝑦⃗ = 𝑥⃗∗&𝛽 |𝑦⃗ ∼ 𝑁 𝜇⃗',-., Σ',-.

where

𝜇⃗',-. = 𝑥⃗∗&Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝑦⃗,

Σ',-. = 𝑥⃗∗&Σ𝑥⃗∗ − 𝑥⃗∗&Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝐴Σ𝑥⃗∗

� Covariance between 𝑦⃗ and 𝛽:

Cov 𝑦⃗, 𝛽 = Cov 𝐴𝛽 + 𝜖, 𝛽 = Cov 𝐴𝛽, 𝛽 = 𝐴Cov 𝛽, 𝛽 = 𝐴Σ

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels

Henry Chai - 4/18/22 14



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels

Henry Chai - 4/18/22 15



Bayesian
Linear 
Regression…
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = 𝐴𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  

𝑦∗|𝑦⃗ = 𝑥⃗∗&𝛽 |𝑦⃗ ∼ 𝑁 𝜇⃗',-., Σ',-.

where

𝜇⃗',-. = 𝑥⃗∗&Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝑦⃗,

Σ',-. = 𝑥⃗∗&Σ𝑥⃗∗ − 𝑥⃗∗&Σ𝐴& 𝐴Σ𝐴& + 𝜎"𝐼! *%𝐴Σ𝑥⃗∗

� Covariance between 𝑦⃗ and 𝛽:

Cov 𝑦⃗, 𝛽 = Cov 𝐴𝛽 + 𝜖, 𝛽 = Cov 𝐴𝛽, 𝛽 = 𝐴Cov 𝛽, 𝛽 = 𝐴Σ

𝐴 =

1 𝑥⃗!"

1 𝑥⃗#"
⋮ ⋮
1 𝑥⃗$"



Bayesian
Linear 
Regression can 
be kernelized!
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = Φ𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#!$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  

𝑦∗|𝑦⃗ = 𝜙 𝑥⃗∗ &𝛽 |𝑦⃗ ∼ 𝑁 𝜇⃗',-., Σ',-.

where

𝜇⃗',-. = 𝜙 𝑥⃗∗ &ΣΦ& ΦΣΦ& + 𝜎"𝐼! *%𝑦⃗,
Σ',-.
= 𝜙 𝑥⃗∗ &Σ𝜙 𝑥⃗∗ − 𝜙 𝑥⃗∗ &ΣΦ& ΦΣΦ& + 𝜎"𝐼! *%ΦΣ𝜙 𝑥⃗∗

Φ =

1 𝜙 𝑥⃗! "

1 𝜙 𝑥⃗# "

⋮ ⋮
1 𝜙 𝑥⃗$ "



Bayesian
Linear 
Regression can 
be kernelized!
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� Assume a linear model with additive Gaussian noise and a   

zero-mean Gaussian prior on the weights:

𝑦⃗ = Φ𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#!$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  

𝑦∗|𝑦⃗ = 𝜙 𝑥⃗∗ &𝛽 |𝑦⃗ ∼ 𝑁 𝜇⃗',-., Σ',-.

where

𝜇⃗',-. = 𝜙 𝑥⃗∗ &ΣΦ& ΦΣΦ& + 𝜎"𝐼! *%𝑦⃗,
Σ',-.
= 𝜙 𝑥⃗∗ &Σ𝜙 𝑥⃗∗ − 𝜙 𝑥⃗∗ &ΣΦ& ΦΣΦ& + 𝜎"𝐼! *%ΦΣ𝜙 𝑥⃗∗

� Define the kernel function to be 
𝐾 𝑥⃗, 𝑥⃗/ = 𝜙 𝑥⃗ &Σ𝜙 𝑥⃗/

Φ =

1 𝜙 𝑥⃗! "

1 𝜙 𝑥⃗# "

⋮ ⋮
1 𝜙 𝑥⃗$ "



Bayesian
Linear 
Regression can 
be kernelized!
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝑦⃗ = Φ𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#!$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  
𝑦∗|𝑦⃗ ∼ 𝑁 𝜇⃗',-., Σ',-.

where

𝜇⃗',-. = 𝐾 𝑥⃗∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎"𝐼! *%𝑦⃗,
Σ',-. = 𝐾 𝑥⃗∗, 𝑥⃗∗ − 𝐾 𝑥⃗∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎"𝐼! *%𝐾 𝐴, 𝑥⃗∗

� Define the kernel function to be 
𝐾 𝑥⃗, 𝑥⃗/ = 𝜙 𝑥⃗ &Σ𝜙 𝑥⃗/



Wait, what 
happened to 
the weights?
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� Assume a linear model with additive Gaussian noise and a   

zero-mean Gaussian prior on the weights:

𝑦⃗ = Φ𝛽 + 𝜖 where 𝜖 ~ 𝑁 0!, 𝜎"𝐼! and 𝛽 ~ 𝑁 0#!$%, Σ

� then given a new test data point 𝑥⃗∗, the prediction is  
𝑦∗|𝑦⃗ ∼ 𝑁 𝜇⃗',-., Σ',-.

where

𝜇⃗',-. = 𝐾 𝑥⃗∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎"𝐼! *%𝑦⃗,
Σ',-. = 𝐾 𝑥⃗∗, 𝑥⃗∗ − 𝐾 𝑥⃗∗, 𝐴 𝐾 𝐴, 𝐴 + 𝜎"𝐼! *%𝐾 𝐴, 𝑥⃗∗

� Define the kernel function to be 
𝐾 𝑥⃗, 𝑥⃗/ = 𝜙 𝑥⃗ &Σ𝜙 𝑥⃗/



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels
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A new 
perspective
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Gaussian process = 

The extension of a Gaussian 

distribution to functions



Gaussians

23Henry Chai - 4/18/22

� (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎" = 1

� Multivariate Gaussians: lllllll

𝑥⃗ = 𝑥%, … , 𝑥#
&

∼ 𝒩 𝑥⃗; 𝜇⃗ = 0#, Σ = 𝐼#



Gaussian 
Process (GP)

24

𝑓:ℝ# ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥/ = exp − 𝑥 − 𝑥/ "

x

Mean ±2 Standard Deviations

𝑓 ~ 𝒢𝒫 𝜇, Σ → 𝑓 𝑥 ~𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥
Henry Chai - 4/18/22



Gaussians
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� (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎" = 1

� Multivariate Gaussians: lllllll

𝑥⃗ = 𝑥%, … , 𝑥#
&

∼ 𝒩 𝑥⃗; 𝜇⃗ = 0#, Σ = 𝐼#



Gaussian 
Process (GP)

26

x

Samples Mean ±2 Standard Deviations

𝑓:ℝ# ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥/ = exp − 𝑥 − 𝑥/ "

Henry Chai - 4/18/22
𝑓 ~ 𝒢𝒫 𝜇, Σ → 𝑓 𝑥 ~𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥



Gaussian 
Process (GP)

27

x

Samples Mean ±2 Standard Deviations

Henry Chai - 4/18/22
𝑓 ~ 𝒢𝒫 𝜇, Σ → 𝑓 𝑥 ~𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥

𝑓:ℝ# ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥/ = exp − 𝑥 − 𝑥/



GP Prior

28

𝑓:ℝ# ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥/ = exp − 𝑥 − 𝑥/ "

x

Mean ±2 Standard Deviations

Henry Chai - 4/18/22



GP Posterior

29

x

D = Data Mean ±2 Standard Deviations

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

Henry Chai - 4/18/22



GP Posterior

30

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

x

Samples D = Data Mean ±2 Standard Deviations

Henry Chai - 4/18/22



GP Posterior

31

x⇤x

Samples D = Data Mean ±2 Standard Deviations

𝑓 𝑥∗ ~𝒩 𝜇𝒟 𝑥∗ , Σ𝒟 𝑥∗, 𝑥∗

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

Henry Chai - 4/18/22



Active 
Learning
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Suppose you 
can add one 
data point to 
your training 
data. 

Which point 
would you add 
and why?

Henry Chai - 4/18/22 33



34

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

x

Samples D = Data Mean ±2 Standard Deviations

Henry Chai - 4/18/22

Are GPs:

1. parametric or 
nonparametric

2. generative or 
discriminative



35

𝑓 | 𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

x

Samples D = Data Mean ±2 Standard Deviations

Henry Chai - 4/18/22

GPs are

1. parametric or 
nonparametric

2. generative or 
discriminative



Kernel Hyperparameters

x

Samples D = Data Mean ±2 Standard Deviations

x

Samples D = Data Mean ±2 Standard Deviations

36

Log-Likelihood of 𝒟:
log𝑁 𝑦; 𝜇 𝐴 , 𝛴 𝐴, 𝐴 = −6.82

Log-Likelihood of 𝒟:
log𝑁 𝑦; 𝜇 𝐴 , 𝛴 𝐴, 𝐴 = −8.26

𝑓 ∼ 𝒢𝒫 𝑓; 0, 1" exp −
𝑥 − 𝑥/ "

1"
𝑓 ∼ 𝒢𝒫 𝑓; 0, 2" exp −

𝑥 − 𝑥/ "

2"
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