
10-315: Introduction to Machine Learning Recitation 3

1 Categorical MLE

The categorical distribution represents a discrete random variable that can take on one of K values. It is
described by a parameter vector µ = (µ1, µ2, · · · , µK), where

∑K
k=1 µk = 1 and each µk determines the

probability that the random variable is in category k.
For a random variable that obeys the categorical distribution, we can represent it as a K-dimensional vector
x = (x1, x2, · · · , xk) with one component set to 1 and the remaining set to 0, depending on which category it
belongs to. Note that the Bernoulli distribution is a special case of the categorical distribution, where K = 2.
Question 1: For a dataset D drawn from the categorical distribution, write the likelihood function p(D | µ).

Question 2: Show that the log-likelihood function is concave and compute the maximum likelihood estimate
for µ.

1



10-315: Introduction to Machine Learning Recitation 3

2 Gaussian MLE

Recall that the pdf for a univariate Gaussian is given by the following equation

p(x) =
1√
2πσ2

e−
(x−µ2)

σ2 .

Question 1: Derive the likelihood function p(D | θ) and compute the maximum likelihood estimates for µ
and σ2 using the log-likelihood function.

2



10-315: Introduction to Machine Learning Recitation 3

3 Gradient Descent

Let f : Rn → R be a differentiable function. The gradient of f , ∇f(x), is defined to be the direction of
steepest ascent of the function - correspondingly, the negative gradient −∇f(x) is the direction of steepest
descent.
With this, we can derive a naive procedure for finding minima of a function by starting with an initial guess
for our optimum and moving in the direction of the negative gradient

xt+1 ← xt − ηt∇f(xt)

where ηt is a step size parameter that controls how far in the direction of the negative gradient we move.
In the machine learning and optimization community, this procedure is called gradient descent.
Question 1: How can gradient descent be useful in a machine learning setting?

Question 2: Let f(x) = 1
2x

2, x0 = 2, and η = 0.5. Compute two steps of gradient descent on this function.

3



10-315: Introduction to Machine Learning Recitation 3

4 Stochastic Gradient Descent and Variants

In most machine learning applications, our metric of performance is a loss function L(hθ(x), y) that tells us
how poorly our classifier performs on a single sample (x, y). For an entire dataset D, we usually consider the
empirical risk (defined to be the average loss over all the samples)

LD =
1

N

N∑
i=1

L(hθ(xi), yi).

Question 1: Consider drawing a single sample (xi, yi) uniformly at random from your dataset and computing
the gradient of the loss function evaluated at that sample. Let ĝ denote this gradient vector. What is E[ĝ]?

SGD and GD: With this in mind, we can define full-batch gradient descent and stochastic gradient descent
(SGD). Full batch gradient descent proceeds in the same way as gradient descent defined on the previous
slide.

Algorithm 1 Full-batch Gradient Descent

1: for t in [T ] do
2: for sample xi in dataset do
3: Compute L(hθ(xi), yi) and ∇θL(hθ(xi), yi)
4: end for
5: Set ∇f(θt) = 1

N

∑N
i=1∇θL(hθ(xi), yi)

6: Perform gradient step θt+1 ← θt − ηt∇f(θt)
7: end for

Algorithm 2 SGD

1: for t in [T ] do
2: for sample xi in dataset do
3: Compute L(hθ(xi), yi) and ∇θL(hθ(xi), yi)
4: Set ĝt = ∇θL(hθ(xi), yi)
5: Perform gradient step θt+1 ← θt − ηtĝt
6: end for
7: end for

Question: What is the complexity of performing one step of gradient descent versus if we consider the cost
of computing a single sample gradient to be O(1)? How might this inform our algorithm design choices when
deciding between SGD and GD?

4



10-315: Introduction to Machine Learning Recitation 3

5 Variants of GD and SGD

Example 1 - Momentum: GD with momentum obeys the following update rule

vt ← βvt−1 + η∇f(θt−1)

θt ← θt−1 − vt.

Why might momentum be useful, particularly in the context of stochastic gradient descent? (Hint: consider
what happens as we vary β.)

Example 2 - AdaGrad Let ĝt,i denote the i-th component of the stochastic gradient at time-step t.
AdaGrad computes updates as follows:

θt,i ← xt−1,i −
η√∑t−1

j=1 ĝj,i + ϵ
ĝt−1,i.

(Ignore ϵ as that’s mostly used for numerical stability when performing division.) Why might performing this
type of normalization be useful when doing SGD, especially with very high dimensional parameter vectors
x?

Note: In practice, we typically use the Adam optimizer, which combines elements from momentum and
AdaGrad and has been found to be very useful specifically when optimizing neural networks.

5


	Categorical MLE
	Gaussian MLE
	Gradient Descent
	Stochastic Gradient Descent and Variants
	Variants of GD and SGD

