10-315: Introduction to Machine Learning Recitation 3

1 Categorical MLE

The categorical distribution represents a discrete random variable that can take on one of K values. It is
described by a parameter vector pu = (u1, o, - , i), where Zszl pr = 1 and each pj determines the
probability that the random variable is in category k.

For a random variable that obeys the categorical distribution, we can represent it as a K-dimensional vector
x = (x1,2, -+ ,x)) with one component set to 1 and the remaining set to 0, depending on which category it
belongs to. Note that the Bernoulli distribution is a special case of the categorical distribution, where K = 2.
Question 1: For a dataset D drawn from the categorical distribution, write the likelihood function p(D | ).

Question 2: Show that the log-likelihood function is concave and compute the maximum likelihood estimate
for p.



10-315: Introduction to Machine Learning Recitation 3

2 Gaussian MLE

Recall that the pdf for a univariate Gaussian is given by the following equation
1 _(e—p?)

) = Jorez T

Question 1: Derive the likelihood function p(D | 6) and compute the maximum likelihood estimates for u
and 0?2 using the log-likelihood function.




10-315: Introduction to Machine Learning Recitation 3

3 Gradient Descent

Let f : R® — R be a differentiable function. The gradient of f, V f(x), is defined to be the direction of
steepest ascent of the function - correspondingly, the negative gradient —V f(x) is the direction of steepest
descent.

With this, we can derive a naive procedure for finding minima of a function by starting with an initial guess
for our optimum and moving in the direction of the negative gradient

"Et+1 < Tt — ntVf(l't)

where 7 is a step size parameter that controls how far in the direction of the negative gradient we move.
In the machine learning and optimization community, this procedure is called gradient descent.
Question 1: How can gradient descent be useful in a machine learning setting?

Question 2: Let f(z) = %xz, xo = 2, and 1 = 0.5. Compute two steps of gradient descent on this function.



10-315: Introduction to Machine Learning Recitation 3

4 Stochastic Gradient Descent and Variants

In most machine learning applications, our metric of performance is a loss function L(hg(z),y) that tells us
how poorly our classifier performs on a single sample (z,y). For an entire dataset D, we usually consider the
empirical risk (defined to be the average loss over all the samples)

N
1
Lp = N ;ﬁ(h0($i>7yi)'

Question 1: Consider drawing a single sample (z;, y;) uniformly at random from your dataset and computing
the gradient of the loss function evaluated at that sample. Let § denote this gradient vector. What is E[§]?

SGD and GD: With this in mind, we can define full-batch gradient descent and stochastic gradient descent
(SGD). Full batch gradient descent proceeds in the same way as gradient descent defined on the previous
slide.

Algorithm 1 Full-batch Gradient Descent
1: for t in [T] do
2 for sample x; in dataset do
3 Compute L(hg(x;),y;) and VoL(he(x;),y;)
4: end for
5. Set V() = & Yy VoL(ho(w:), i)
6
7

Perform gradient step 6,41 < 6; — n:V f(6;)
end for

Algorithm 2 SGD
1: for t in [T] do
2 for sample z; in dataset do
3 Compute L(hg(z;),y;) and VoL(hg(z;),y:)
4 Set gi = VoL(ho(:),y:)
5: Perform gradient step 0y41 < 0y — n:G¢
6
7

end for
end for

Question: What is the complexity of performing one step of gradient descent versus if we consider the cost
of computing a single sample gradient to be O(1)? How might this inform our algorithm design choices when
deciding between SGD and GD?



10-315: Introduction to Machine Learning Recitation 3

5 Variants of GD and SGD

Example 1 - Momentum: GD with momentum obeys the following update rule

v <= Pug—1 +nVf(0i-1)
6‘t — Qt,l — Ug.

Why might momentum be useful, particularly in the context of stochastic gradient descent? (Hint: consider
what happens as we vary (.)

Example 2 - AdaGrad Let §;; denote the i-th component of the stochastic gradient at time-step ¢.
AdaGrad computes updates as follows:

Ui

?gt—l,i-
> =190t €

Ori < Te—1,5 —

(Ignore € as that’s mostly used for numerical stability when performing division.) Why might performing this
type of normalization be useful when doing SGD, especially with very high dimensional parameter vectors
z?

Note: In practice, we typically use the Adam optimizer, which combines elements from momentum and
AdaGrad and has been found to be very useful specifically when optimizing neural networks.



	Categorical MLE
	Gaussian MLE
	Gradient Descent
	Stochastic Gradient Descent and Variants
	Variants of GD and SGD

