10-315: Introduction to Machine Learning Recitation 3

1 Categorical MLE

The categorical distribution represents a discrete random variable that can take on one of K values. It is
described by a parameter vector pu = (u1, o, - , i), where Zszl pr = 1 and each pj determines the
probability that the random variable is in category k.

For a random variable that obeys the categorical distribution, we can represent it as a K-dimensional vector
x = (x1,2, -+ ,x)) with one component set to 1 and the remaining set to 0, depending on which category it
belongs to. Note that the Bernoulli distribution is a special case of the categorical distribution, where K = 2.
Question 1: For a dataset D drawn from the categorical distribution, write the likelihood function p(D | ).

Question 2: Show that the log-likelihood function is concave and compute the maximum likelihood estimate
for p.
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2 Gaussian MLE

Recall that the pdf for a univariate Gaussian is given by the following equation
1 _(e—p?)

) = Jorez T

Question 1: Derive the likelihood function p(D | 6) and compute the maximum likelihood estimates for u
and 0?2 using the log-likelihood function.
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3 Gradient Descent

Let f : R® — R be a differentiable function. The gradient of f, V f(x), is defined to be the direction of
steepest ascent of the function - correspondingly, the negative gradient —V f(x) is the direction of steepest
descent.

With this, we can derive a naive procedure for finding minima of a function by starting with an initial guess
for our optimum and moving in the direction of the negative gradient

"Et+1 < Tt — ntVf(l't)

where 7 is a step size parameter that controls how far in the direction of the negative gradient we move.
In the machine learning and optimization community, this procedure is called gradient descent.
Question 1: How can gradient descent be useful in a machine learning setting?

Question 2: Let f(z) = %xz, xo = 2, and 1 = 0.5. Compute two steps of gradient descent on this function.
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4 Stochastic Gradient Descent and Variants

In most machine learning applications, our metric of performance is a loss function L(hg(z),y) that tells us
how poorly our classifier performs on a single sample (z,y). For an entire dataset D, we usually consider the
empirical risk (defined to be the average loss over all the samples)

N
1
Lp = N ;ﬁ(h0($i>7yi)'

Question 1: Consider drawing a single sample (z;, y;) uniformly at random from your dataset and computing
the gradient of the loss function evaluated at that sample. Let § denote this gradient vector. What is E[§]?

SGD and GD: With this in mind, we can define full-batch gradient descent and stochastic gradient descent
(SGD). Full batch gradient descent proceeds in the same way as gradient descent defined on the previous
slide.

Algorithm 1 Full-batch Gradient Descent
1: for t in [T] do
2 for sample x; in dataset do
3 Compute L(hg(x;),y;) and VoL(he(x;),y;)
4: end for
5. Set V() = & Yy VoL(ho(w:), i)
6
7

Perform gradient step 6,41 < 6; — n:V f(6;)
end for

Algorithm 2 SGD
1: for t in [T] do
2 for sample z; in dataset do
3 Compute L(hg(z;),y;) and VoL(hg(z;),y:)
4 Set gi = VoL(ho(:),y:)
5: Perform gradient step 0y41 < 0y — n:G¢
6
7

end for
end for

Question: What is the complexity of performing one step of gradient descent versus if we consider the cost
of computing a single sample gradient to be O(1)? How might this inform our algorithm design choices when
deciding between SGD and GD?
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5 Variants of GD and SGD

Example 1 - Momentum: GD with momentum obeys the following update rule

v <= Pug—1 +nVf(0i-1)
6‘t — Qt,l — Ug.

Why might momentum be useful, particularly in the context of stochastic gradient descent? (Hint: consider
what happens as we vary (.)

Example 2 - AdaGrad Let §;; denote the i-th component of the stochastic gradient at time-step ¢.
AdaGrad computes updates as follows:

Ui

?gt—l,i-
> =190t €

Ori < Te—1,5 —

(Ignore € as that’s mostly used for numerical stability when performing division.) Why might performing this
type of normalization be useful when doing SGD, especially with very high dimensional parameter vectors
z?

Note: In practice, we typically use the Adam optimizer, which combines elements from momentum and
AdaGrad and has been found to be very useful specifically when optimizing neural networks.
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