
10-315: Introduction to Machine Learning Recitation 2

1 Convex Sets

A convex set is a set D with the following property: ∀x, y ∈ D

αx+ (1− α)y ∈ D, ∀α ∈ [0, 1]

Figure 1: Examples of convex sets. From 10-725 slides by Prof. Yuanzhi Li.

Example: Simple convex sets

• a line

• the empty set

• a single point

Example: Let Ci be a convex set for ∀i. Is the conjunction of the convex sets C = ∩ Ci a convex set? What
about the union of convex sets C′ = ∪ Ci?

1



10-315: Introduction to Machine Learning Recitation 2

2 Convex Functions

A function f over a convex set D is convex if ∀x, y ∈ D,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1]

A function f over a convex set D is strictly convex if ∀x, y ∈ D,

f(αx+ (1− α)y) < αf(x) + (1− α)f(y), ∀α ∈ [0, 1]

A function f over a convex set D is concave if ∀x, y ∈ D,

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y), ∀α ∈ [0, 1]

Important Note: Non-convex ̸= concave.

Examples:

• f(x) = x

• f(x) = x2

• f(x) = 1
x , x > 0

Example: If f and g are convex functions, please show that f + g is also a convex function.

Example: If f and g are convex functions, please show that max(f, g) is also a convex function. Is min(f, g)
a convex function?

Other properties of convex functions: In one-dimensional case, i.e. f, g : R → R

• If f and g are convex and g is non-decreasing, g ◦ f is convex, e.g. f(x) = 1
x , x > 0 and g(x) = x2.

• If f is concave and g is convex and non-increasing then g ◦ f is convex.
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3 Aside: Gradients and Hessians

In machine learning, we’re typically concerned with computing derivatives of functions with vector-valued
inputs. To formalize this notion, we’ll introduce the gradient vector and Hessian matrix.

3.1 Definitions

For a function f : Rn → R, the gradient vector ∇f(x) ∈ Rn is defined as follows:

∇f(x) =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xm

]T
On the other hand, for a function f : Rn → Rm, the Hessian matrix generalizes second derivatives for
scalar functions with vector inputs and is defined as ∇2f(x)ij = ∂f

∂xi∂xj
. In this handout, we will present

all the derivatives in denominator layout - i.e., each row i of the gradient vector, which is a column vector,
corresponds to the derivative of f with respect to an input variable xi. The definition above uses denominator
layout. In numerator layout, the gradient vector would be a row vector, with each column i corresponding
to the derivative with respect to an input variable xi.

3.2 Examples

1. Let y = f(x) = 3x2
1 sinx2. What are ∇f(x) and ∇2f(x)?

2. Let f(x) = ∥x∥22. What are ∇f(x) and ∇2f(x)?

Additional Notes: In single variable calculus, we have the Taylor series, which is an approximation of f(y)
using an infinite sum of terms that include derivatives at a particular point, i.e. for a constant x,

f(y) ≈
∞∑

n=0

f (n)(x)

n!
(y − x)n

For multivariable functions, we can write the following second order Taylor expansion:

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x).

Inequalities relating the LHS and RHS as well as a bound on the Hessian term are frequently used in convex
optimization.
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4 Check Convexity

First Order Condition: Suppose f : Rn → R is differentiable. Then f is convex if and only if ∀x, y ∈ Rn

f(y) ≥ f(x) +∇f(x)T (y − x)

Figure 2: First Order Condition. From 10-725 slides by Prof. Zhiyuan Li.

Second Order Condition: Suppose f : Rn → R is twice differentiable. Then f is convex if and only if
∀x ∈ Rn

∇2f(x) ≽ 0

i.e. the eigenvalues of ∇2f(x) are all non-negative.

Example: Show the MLE target function f(θ) = log
∏n

i=1 θ
Xi(1− θ)1−Xi is concave.
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5 Minimum & Maximum

Local minimum If f is differentiable and twice differentiable, f(x∗) is the local minimum of the function f

∇f(x∗) = 0 and ∇2f(x∗) ≽ 0

Global minimum If f is convex, then any local minimum of f is also a global minimum.

Saddle point If f is differentiable and twice differentiable, f(x∗) is a saddle point if

∇f(x∗) = 0 but not ∇2f(x∗) ≽ 0

Example: Saddle point f(x) = x3 at x = 0

Another example: Potato chips
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