10-315: Introduction to Machine Learning Recitation 2

1 Multinomial MLE

Example 1.1: Suppose we have multiple classes a1,...,a, and m data samples D. We observe k; data
for the first class, ko data for the second class and so on, k; > 0. We seek to compute P(0|D) where
6 = (p1,...,pn) with > p; = 1. Please write the expression for MLE, i.e. P(D|6).

Example 1.2: What is the MLE estimator for 67
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2 Bernoulli MAP

Now let’s consider MAP instead. Recall that we’re trying to maximize the posterior probability P(6|D).
Example 2.1: Assume that the probability of the prior P(f = 0.25) = 0.1, P(¢ = 0.55) = 0.6, P(6 =

0.75) = 0.2. Given the 2 samples with the observations [“head”, “head”], which one of the three § values is
the most likely estimation for 67

Example 2.2: Now we have 10 observations with 8 heads and 2 tails, which one of the three 6 values gives
you the best estimation for 67

Example 2.3: How will the number of samples affects the estimation of 67
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3 Gradient Descent
Let f be a differentiable function. A gradient descent step update the value of x:
Ty < w41 — 0 Vf(T1-1)
Visualization: https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent /
Why do we need gradient descent?

Example 3.1: Compute gradient descent for function f(z) = 122 with 29 = 1 and learning rate n = 0.1.

2
Please repeat for two steps.


https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/
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4 Other Gradient Descent Methods

4.1 Stochastic Gradient Descent
Problem: Compute the gradient V f(z) for the full batch of data is expensive.

Solution: Randomly sample a data from the distribution D and compute the gradient.
e Fast
e Less accurate at each step

e But it will converge towards the optimal point in expectation

batch-based GD single sample SGD

Figure 1: Cite: https://www.cs.cmu.edu/~aarti/Class/10315_Fall20/recs/rec2slides.pdf


https://www.cs.cmu.edu/~aarti/Class/10315_Fall20/recs/rec2slides.pdf
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4.2 Newton’s Method

Idea: Quadratic approximation of f(z)
Let f(z) be convex and twice differentiable. The quadratic approximation of f(x) is
Fl) = F@) + V) (g — ) + 3l — )9 @)y — )
Minimize over y yields
xp 11 — (V2f(2) 'V f(2)

e Less optimization steps

e Each step is expensive to compute

by

20t

101

Figure 2: Cite: https://www.intmath.com/applications-differentiation/newtons-method-interactive.php


https://www.intmath.com/applications-differentiation/newtons-method-interactive.php
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4.3 SGD with Momentum

Update z; using gradients from previous steps
Ty < Tg—1 — Vg

where
ve =7 -v_1+n - Vf(zi_1)

U= ==

Image 2: SGD without momentum Image 3: SGD with momentum

Figure 3: Cite: https://ruder.io/optimizing-gradient-descent/

4.4 Other Optimization Methods

RMSProp
AdaGrad

AdaDelta

e Adam

And many many more ...


https://ruder.io/optimizing-gradient-descent/
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