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1 Multinomial MLE

Example 1.1: Suppose we have multiple classes a1, . . . , an and m data samples D. We observe k1 data
for the first class, k2 data for the second class and so on, ki > 0. We seek to compute P (θ|D) where
θ = (p1, . . . , pn) with

∑
pi = 1. Please write the expression for MLE, i.e. P (D|θ).

Example 1.2: What is the MLE estimator for θ?
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2 Bernoulli MAP

Now let’s consider MAP instead. Recall that we’re trying to maximize the posterior probability P (θ|D).

Example 2.1: Assume that the probability of the prior P (θ = 0.25) = 0.1, P (θ = 0.55) = 0.6, P (θ =
0.75) = 0.2. Given the 2 samples with the observations [“head”, “head”], which one of the three θ values is
the most likely estimation for θ?

Example 2.2: Now we have 10 observations with 8 heads and 2 tails, which one of the three θ values gives
you the best estimation for θ?

Example 2.3: How will the number of samples affects the estimation of θ?
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3 Gradient Descent

Let f be a differentiable function. A gradient descent step update the value of xt:

xt ← xt−1 − η · ∇f(xt−1)

Visualization: https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/

Why do we need gradient descent?

Example 3.1: Compute gradient descent for function f(x) = 1
2x

2 with x0 = 1 and learning rate η = 0.1.
Please repeat for two steps.
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4 Other Gradient Descent Methods

4.1 Stochastic Gradient Descent

Problem: Compute the gradient ∇f(x) for the full batch of data is expensive.

Solution: Randomly sample a data from the distribution D and compute the gradient.

• Fast

• Less accurate at each step

• But it will converge towards the optimal point in expectation

Figure 1: Cite: https://www.cs.cmu.edu/∼aarti/Class/10315 Fall20/recs/rec2slides.pdf
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4.2 Newton’s Method

Idea: Quadratic approximation of f(x)

Let f(x) be convex and twice differentiable. The quadratic approximation of f(x) is

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)

Minimize over y yields

xt ← xt−1 − (∇2f(x))−1∇f(x)

• Less optimization steps

• Each step is expensive to compute

Figure 2: Cite: https://www.intmath.com/applications-differentiation/newtons-method-interactive.php
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4.3 SGD with Momentum

Update xt using gradients from previous steps

xt ← xt−1 − vt

where
vt = γ · vt−1 + η · ∇f(xt−1)

Figure 3: Cite: https://ruder.io/optimizing-gradient-descent/

4.4 Other Optimization Methods

• RMSProp

• AdaGrad

• AdaDelta

• Adam

• And many many more . . .
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