
10-315: Introduction to Machine Learning Recitation 7

1 Constrained Optimization

The following example is taken from http://people.brunel.ac.uk/mastjjb/jeb/or/morelp.html.

Example Suppose a company makes two products X and Y using two machines (A and B). Each X that is
produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B.
Each Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time
on machine B.

Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.
The demand for X in the current week is forecast to be 45 units and for Y is forecast to be 5 units. Company
policy is to maximise the combined sum of the number of X and Y at the end of the week. Formulate the
problem of deciding how much of each product to make in the current week.
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2 Duality

Examples in this section are borrowed from 10725 lectures by Ryan Tibshirani.

Example 1 Let’s consider a simpler optimization problem

min
x,y

x+ y

subject to x+ y ≥ 2

x, y ≥ 0

What is the lower bound?

Example 2 What is the lower bound of the following problem?

min
x,y

x+ 3y

subject to x+ y ≥ 2

x, y ≥ 0

Example 3 Can you solve the general form of this problem?

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

How can you get the exact lower bound?
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We call this solution the dual form of the original problem.

Primal

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

Dual

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Duality for general form LP More generally, let c ∈ Rn, A ∈ Rm×n, b ∈ Rr×n, h ∈ Rr.

Primal

min
x

cTx

subject to Ax = b

Gx ≤ h

Dual

max
u,v

bTu− hT v

subject to −ATu−GT v = c

v ≥ 0
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3 Lagrange Dual problem

Given a primal problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

li(x) = 0, j = 1, . . . , r

We define the Lagrangian as

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x), ui ≥ 0

Note that for any ui ≥ 0 and vj , f(x) ≥ L(x, u, v).

Lagrange dual problem We let g(u, v) = minx L(x, u, v) (x is not constrained). The best lower bound for
f∗ is obtained by maximizing g(u, v) over all feasible u and v, i.e.

max
x

g(u, v)

subject to ui ≥ 0

Weak duality For any feasible x and feasible u, v,

f∗ ≥ g∗

Strong duality We say strong duality holds if

f∗ = g∗

Slater’s condition If the primal is a convex problem, i.e. f and hi are convex, and li are affine, and there
exists at least one strictly feasible point x, meaning

hi(x) < 0 ∀i and lj(x) = 0 ∀j

then strong duality holds.

Convexity The dual problem is always convex (or concave), even though the original primal problem is
non-convex.
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4 KKT conditions

For a problem with strong duality, x∗ and u∗, v∗ are primal and dual solutions if and only if x∗ and u∗, v∗

satisfy the KKT conditions.

• 0 ∈ ∂(L(x, u, v))

• ui · hi(x) = 0 for all i

• hi(x) ≤ 0 and lj(x) = 0 for all i, j

• ui ≥ 0 for all i

Example Use KKT conditions to solve the following constrained optimization problem.

min
a,b,c

x2 + y2

subject to x+ y − 1 = 0
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