1 Constrained Optimization

The following example is taken from http://people.brunel.ac.uk/mastjjb/jeb/or/morelp.html.

Example Suppose a company makes two products X and Y using two machines (A and B). Each X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B.

Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours. The demand for X in the current week is forecast to be 45 units and for Y is forecast to be 5 units. Company policy is to maximise the combined sum of the number of X and Y at the end of the week. Formulate the problem of deciding how much of each product to make in the current week.

2 Duality

Examples in this section are borrowed from 10725 lectures by Ryan Tibshirani.

Example 1 Let's consider a simpler optimization problem

$$\label{eq:linear_equation} \begin{aligned} \min_{x,y} & & x+y\\ \text{subject to} & & x+y \geq 2\\ & & & x,y \geq 0 \end{aligned}$$

What is the lower bound?

Example 2 What is the lower bound of the following problem?

$$\begin{aligned} & \min_{x,y} & x + 3y \\ \text{subject to} & x + y \geq 2 \\ & x, y \geq 0 \end{aligned}$$

Example 3 Can you solve the general form of this problem?

$$\min_{x,y} \quad px + qy$$
 subject to
$$x + y \ge 2$$

$$x, y \ge 0$$

How can you get the exact lower bound?

We call this solution the dual form of the original problem.

Primal

$$\begin{aligned} & \min_{x,y} & px + qy \\ \text{subject to} & x + y \geq 2 \\ & x, y \geq 0 \end{aligned}$$

Dual

$$\max_{a,b,c} \ 2a$$
 subject to
$$a+b=p$$

$$a+c=q$$

$$a,b,c\geq 0$$

Duality for general form LP More generally, let $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{r \times n}$, $h \in \mathbb{R}^r$.

Primal

$$\min_{x} c^{T}x$$
 subject to $Ax = b$
$$Gx \le h$$

Dual

$$\max_{u,v} \ b^T u - h^T v$$
 subject to
$$-A^T u - G^T v = c$$

$$v \ge 0$$

3 Lagrange Dual problem

Given a primal problem

$$\min_{x} f(x)$$
subject to $h_i(x) \le 0, \quad i = 1, \dots, m$

$$l_i(x) = 0, \quad j = 1, \dots, r$$

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{i=1}^{r} v_i l_j(x), \quad u_i \ge 0$$

Note that for any $u_i \geq 0$ and v_j , $f(x) \geq L(x, u, v)$.

Lagrange dual problem We let $g(u, v) = \min_x L(x, u, v)$ (x is not constrained). The best lower bound for f^* is obtained by maximizing g(u, v) over all feasible u and v, i.e.

$$\max_{x} \ g(u, v)$$
 subject to $u_i \ge 0$

Weak duality For any feasible x and feasible u, v,

$$f^* \ge g^*$$

Strong duality We say strong duality holds if

$$f^* = g^*$$

Slater's condition If the primal is a convex problem, i.e. f and h_i are convex, and l_i are affine, and there exists at least one strictly feasible point x, meaning

$$h_i(x) < 0 \ \forall i \ \text{and} \ l_j(x) = 0 \ \forall j$$

then strong duality holds.

Convexity The dual problem is always convex (or concave), even though the original primal problem is non-convex.

4 KKT conditions

For a problem with strong duality, x^* and u^* , v^* are primal and dual solutions if and only if x^* and u^* , v^* satisfy the KKT conditions.

- $0 \in \partial(L(x, u, v))$
- $u_i \cdot h_i(x) = 0$ for all i
- $h_i(x) \leq 0$ and $l_j(x) = 0$ for all i, j
- $u_i \ge 0$ for all i

Example Use KKT conditions to solve the following constrained optimization problem.

$$\min_{a,b,c} x^2 + y^2$$
 subject to $x + y - 1 = 0$