10-315: Introduction to Machine Learning Recitation 7

1 Constrained Optimization

The following example is taken from http://people.brunel.ac.uk/mastjjb/jeb/or/morelp.html.

Example Suppose a company makes two products X and Y using two machines (A and B). Each X that is
produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B.
Each Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time
on machine B.

Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.
The demand for X in the current week is forecast to be 45 units and for Y is forecast to be 5 units. Company
policy is to maximise the combined sum of the number of X and Y at the end of the week. Formulate the
problem of deciding how much of each product to make in the current week.


http://people.brunel.ac.uk/ mastjjb/jeb/or/morelp.html
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2 Duality

Examples in this section are borrowed from 10725 lectures by Ryan Tibshirani.

Example 1 Let’s consider a simpler optimization problem

min = +vy
z,y

subject to x +y > 2
z,y >0

What is the lower bound?

Example 2 What is the lower bound of the following problem?

min z + 3y
Ty

subject to x +y > 2
z,y >0

Example 3 Can you solve the general form of this problem?

min px + qy
z,y

subject to x +y > 2
z,y >0

How can you get the exact lower bound?
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We call this solution the dual form of the original problem.

Primal
min pzr + qy
zy
subject to = +y > 2
z,y >0
Dual
max 2a
a,b,c

subject to a+b=p
at+c=q
a,b,c>0

Duality for general form LP More generally, let ¢ € R", A € R™*" b e R™" h € R".

Primal
n;in 'z
subject to Az =10
Gx <h
Dual

max b u—hTv

u,v
subject to — ATu—GTv=c
v>0
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3 Lagrange Dual problem

Given a primal problem

min f(z)
subject to h;(x) <0, i=1,...,m
li(x)=0, 7=1,...,r

We define the Lagrangian as
L(z,u,v) = f(x) + Zulhz(x) + Zvjlj(x), u; >0
i=1 j=1

Note that for any u; > 0 and v;, f(z) > L(z,u,v).

Lagrange dual problem We let g(u,v) = min, L(x,u,v) (x is not constrained). The best lower bound for
f* is obtained by maximizing g(u,v) over all feasible u and v, i.e.

max  g(u,v)
€T

subject to u; >0

Weak duality For any feasible = and feasible u, v,
=g
Strong duality We say strong duality holds if

=9

Slater’s condition If the primal is a convex problem, i.e. f and h; are convex, and [; are affine, and there
exists at least one strictly feasible point z, meaning

hi(z) <0 Vi and [;(z) =0 Vj
then strong duality holds.

Convexity The dual problem is always convex (or concave), even though the original primal problem is
non-convex.
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4 KKT conditions

For a problem with strong duality, z* and u*, v* are primal and dual solutions if and only if * and u*, v
satisfy the KKT conditions.

*

e 0€d(L(x,u,v))
o u;-hi(x) =0 for all ¢
e hi(x) <0andlj(z) =0 for all 4,

e u; >0 for all 4

Example Use KKT conditions to solve the following constrained optimization problem.

min  z? 4 >

a,b,c

subject to z+y—1=0
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