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Discriminative Classifiers

2

Why not learn P(Y|X) directly? Or better yet, why not learn the 
decision boundary directly?

• Assume some functional form for P(Y|X) (e.g. Logistic 
Regression) or for the decision boundary (e.g. Neural nets, 
SVMs)

• Estimate parameters of functional form directly from 
training data

Optimal Classifier:



Linear classifiers – which line is 
better?
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Pick the one with the largest margin!
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Parameterizing the decision boundary
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w.x = åiw(i)x(i)



Parameterizing the decision boundary
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Maximizing the margin

7

margin = g = 2a/ǁwǁ
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Distance of closest examples 
from the line/hyperplane

Step 1: w is perpendicular 
to lines since for any x1, x2
on line  w.(x1 – x2) = 0
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Maximizing the margin
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Step1: w is perpendicular 
to lines

Step 2: Take a point x- on 
w.x +b = -a and move to 
point x+ that is g away on 
line w.x+b = a 

x+ = x- + gw/ǁwǁ
w.x+ = w.x- + gw. w/ǁwǁ

a-b = -a-b + gǁwǁ
2a = gǁwǁ

margin = g = 2a/ǁwǁ



Maximizing the margin
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margin = g = 2a/ǁwǁ

Distance of closest examples 
from the line/hyperplane
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g Smaller margin ó larger ǁwǁ



Maximizing the margin
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w
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w.x + b > 0 w.x + b < 0

max  g = 2a/ǁwǁ
w,b

s.t. (w.xj+b) yj ≥ a "j 

margin = g = 2a/ǁwǁ

Note: ‘a’ is arbitrary (can normalize 
equations by a)

Distance of closest examples 
from the line/hyperplane
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Support Vector Machines
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w.x + b > 0 w.x + b < 0

min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j 

Solve efficiently by quadratic 
programming (QP)
– Quadratic objective, linear 

constraints
– Well-studied solution 

algorithms
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Support Vectors

12

w.x + b > 0 w.x + b < 0
Linear hyperplane defined by 
“support vectors”

Moving other points a little 
doesn’t effect the decision 
boundary 

only need to store the 
support vectors to predict 
labels of new points

For support vectors
(w.xj+b) yj = 1



What if data is not linearly separable?
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Use features of features 
of features of features….

But run risk of overfitting!

x12, x22, x1x2, …., exp(x1)



What if data is still not linearly 
separable?
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min  w.w + C #mistakes 
w,b

s.t. (w.xj+b) yj ≥ 1 "j

Allow “error” in classification

Maximize margin and minimize 
# mistakes on training data

C  - tradeoff parameter

Not QP L
0/1 loss (doesn’t distinguish between 
near miss and bad mistake)

Smaller margin ó larger ǁwǁ



What if data is still not linearly 
separable?
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min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake

C  - tradeoff parameter (C = ∞ 
recovers hard margin SVM)

Still QP J
Soft margin approach
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Slack variables

What is the slack ξj  for the 
following points?

(w.xj+b) yj ≥ 1-ξj "j

Confidence       |     Slack

min    w.w + C Σ ξjw,b,{ξj} 
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j
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w
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Notice that

Slack variables – Hinge loss

0-1 loss

0 1

Hinge loss



Slack variables – Hinge loss
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Hinge loss

0-1 loss

0-1 1

min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j
ξj ≥ 0 "j

j

Regularized hinge loss

min  w.w + C Σ(1-(w.xj+b)yj)+w,b j



SVM vs. Logistic Regression
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SVM : Hinge loss

0-1 loss

0-1 1

Logistic Regression : Log loss ( -ve log conditional likelihood)

Hinge lossLog loss



Support Vectors
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w
.x

+ 
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= 
1

w
.x

+ 
b 

= 
-1

Margin support vectors
ξj = 0,  (w.xj+b) yj = 1 
(don’t contribute to objective 
but enforce constraints on 
solution)

Correctly classified but on 
margin

Non-margin support 
vectors
ξj > 0
(contribute to both objective 
and constraints)

1 > ξj > 0 Correctly classified 
but inside margin
ξj > 1 Incorrectly classified

min    w.w + C Σ ξjw,b,{ξj} 
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j



What about multiple classes?
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One vs. rest
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Learn 3 classifiers 
separately: 
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk.x + bk
k

But wks may not be 
based on the same scale.
Note: (aw).x + (ab) is also 
a solution



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg maxk w(k).x + b(k)

Margin - gap between correct 
class and nearest other class

{w(y)}, {b(y)}



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Joint optimization: wks 
have the same scale.

,{ξj} over {w(y)}, {b(y)} ,{ξj
(y)}




