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Parametric methods

• Assume some model (Gaussian, Bernoulli, Multinomial, 
logistic, network of logistic units, Linear, Quadratic) with fixed 
number of parameters
– Gaussian Bayes, Naïve Bayes, Logistic Regression, Neural 

Networks

• Estimate parameters (µ,s2,q,w,b) using MLE/MAP and plug in

• Pro – need few data points to learn parameters
• Con – Strong distributional assumptions, not satisfied in 

practice
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Non-Parametric methods

• Typically don’t make any distributional assumptions
• As we have more data, we should be able to learn more 

complex models
• Let number of parameters scale with number of training data 

• Some nonparametric methods
Classification: Decision trees, k-NN (k-Nearest Neighbor) 
classifier
Density estimation: k-NN, Histogram, Kernel density 
estimate
Regression: Kernel regression
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k-NN classifier
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k-NN classifier
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k-NN classifier (k=5)
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What should we predict? … Average? Majority? Why?



k-NN classifier
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• Optimal Classifier:

• k-NN Classifier:

# total training pts of class y

# training pts of class y
amongst k NNs of x

P (x|y)

bPkNN (x|y)

bPkNN (x|y) = ky
ny



1-Nearest Neighbor (kNN) classifier 

Sports

Science

Arts

8



2-Nearest Neighbor (kNN) classifier 
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3-Nearest Neighbor (kNN) classifier 
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5-Nearest Neighbor (kNN) classifier 
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What is the best k?
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K = 1

Voronoi
Diagram

1-NN classifier decision boundary

As k increases, boundary becomes smoother (less jagged).



What is the best k?
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Approximation vs. Stability (aka Bias vs Variance) Tradeoff

• Larger K => predicted label is more stable 
• Smaller K => predicted label can approximate best classifier 

well given enough data



k-NN density estimation
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k acts as a smoother.

Not very popular for density
estimation – spiked estimates

x

Dk,x



Histogram density estimate
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Partition the feature space into distinct bins with widths Di and 
count the number of observations, ni, in each bin.

• Often, the same width is 
used for all bins, Di = D.

• D acts as a smoothing 
parameter.

Image src: Bishop book

“Local relative frequency”



Effect of histogram bin width
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# bins = 1/D
Small D, large #bins 
Good fit but unstable

(few points per bin)
“Small bias, Large variance”

Large D, small #bins 
Poor fit but stable 

(many points per bin)
“Large bias, Small variance”



Histogram as MLE

• Underlying model – density is constant on each bin
Parameters pj :   density in bin j

Note since 

• Maximize likelihood of data under probability model with 
parameters pj

• Show that histogram density estimate is MLE under this 
model
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max
{pj}

P (X1, . . . , Xn; {pj}1/�j=1 ) s.t.
X

j

pj = 1/�p̂(x) = arg
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max
{pj}

P (X1, . . . , Xn; {pj}1/�j=1 ) s.t.
X

j

pj = 1/�p̂(x) = arg

Histogram as MLE

𝐴. #
!"#

#/∆

𝑝!
&! 𝑤ℎ𝑒𝑟𝑒 𝑛! − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑏𝑖𝑛 𝑗

𝐵. #
!"#

&

𝑝! C. ∏!"#
& 𝑝!

#/∆



• Histogram – blocky estimate

• Kernel density estimate aka “Parzen/moving window 
method”

Kernel density estimate
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• more generally

Kernel density estimate
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Kernels
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Any kernel 
function that 
satisfies



Kernel density estimation
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Gaussian bumps (red) around six data points and their sum (blue) 

• Place small "bumps" at each data point, determined by the  
kernel function. 

• The estimator consists of a (normalized) "sum of bumps”.

• Note that where the points are denser the density estimate 
will have higher values.

Img src: Wikipedia



Choice of Kernels
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Finite support 
– only need local 

points to compute
estimate

Infinite support
- need all points to
compute estimate

-But quite popular 
since smoother 



Choice of kernel bandwidth
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Image Source: 
Larry’s book – All 
of Nonparametric
Statistics

Bart-Simpson 
Density

Too small

Too large
Just right



Histograms vs. Kernel density 
estimation
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D = h acts as a smoother.



Nonparametric density estimation

• Histogram

• Kernel density est

Fix D, estimate number of points within D of x (ni or 
nx) from data

Fix nx= k, estimate D from data (volume of ball 
around x that contains k training pts)

• k-NN density est
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Local Kernel Regression
• What is the temperature 

in the room?
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Average “Local” Average

at location x?

x



Local Kernel Regression

• Nonparametric estimator
• Nadaraya-Watson Kernel Estimator

Where

• Weight each training point based on distance to test 
point

• Boxcar kernel yields
local average
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h



Choice of kernel bandwidth h
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Image Source: 
Larry’s book – All 
of Nonparametric
Statistics

h=1 h=10

h=50 h=200

Too small

Too large
Just 
right

Too small



Kernel Regression as Weighted Least 
Squares

30

Weighted Least Squares

Kernel regression corresponds to locally constant estimator 
obtained from (locally) weighted least squares 

i.e. set    f(Xi) = b (a constant)



Kernel Regression as Weighted Least 
Squares
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constant

Notice that

set   f(Xi) = b (a constant)



Local Linear/Polynomial Regression
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Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial 
estimator obtained from (locally) weighted least squares 

i.e. set    

(local polynomial of degree p around X)



Summary

• Non-parametric approaches
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Four things make a nonparametric/memory/instance 
based/lazy learner:
1. A distance metric, dist(x,Xi)

Euclidean (and many more)  
2. How many nearby neighbors/radius to look at?

k, D/h
3. A weighting function (optional)

W based on kernel K
4. How to fit with the local points?

Average, Majority vote, Weighted average, Poly fit



Summary

• Parametric vs Nonparametric approaches
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Ø Nonparametric models place very mild assumptions on 
the data distribution and provide good models for 
complex data
Parametric models rely on very strong (simplistic) 
distributional assumptions

Ø Nonparametric models (not histograms) requires 
storing and computing with the entire data set. 
Parametric models, once fitted, are much more efficient 
in terms of storage and computation.


