# Clustering

Aarti Singh

Machine Learning 10-315 Nov 15, 2021

Some slides courtesy of Eric Xing, Carlos Guestrin

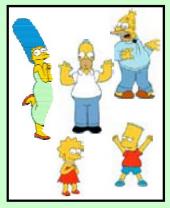




# What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
  - high intra-class similarity
  - low inter-class similarity
  - It is the most common form of unsupervised learning

#### Clustering is subjective



Simpson's Family



School Employees



Females



Males

## What is Similarity?

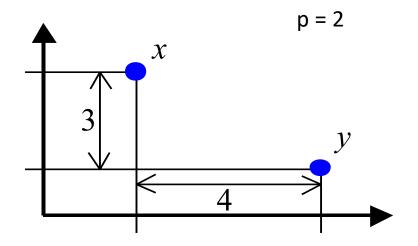


Hard to define! But we know it when we see it

 The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables.

#### **Distance metrics**

$$x = (x_1, x_2, ..., x_p)$$
  
 $y = (y_1, y_2, ..., y_p)$ 



Euclidean distance

$$d(x,y) = 2 \sqrt{\sum_{i=1}^{p} |x_i - y_i|^2}$$

Manhattan distance

$$d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

Sup-distance

$$d(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

5

#### **Correlation coefficient**

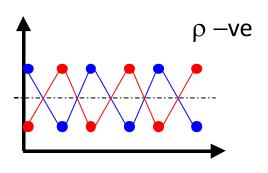
$$x = (x_1, x_2, ..., x_p)$$
  
 $y = (y_1, y_2, ..., y_p)$ 

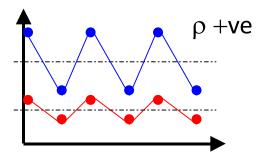
Random vectors (e.g. expression levels of two genes under various drugs)

Pearson correlation coefficient

$$\rho(x,y) = \frac{\sum_{i=1}^{p} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \overline{x})^2 \times \sum_{i=1}^{p} (y_i - \overline{y})^2}}$$

where 
$$\bar{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$
 and  $\bar{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$ .

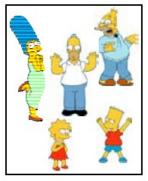




# **Clustering Algorithms**

#### Partition algorithms

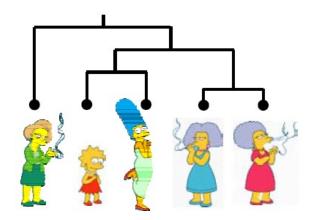
- K means clustering
- Mixture-Model based clustering





#### Hierarchical algorithms

- Single-linkage
- Average-linkage
- Complete-linkage
- Centroid-based



### **Partitioning Algorithms**

- Partitioning method: Construct a partition of n objects into a set of K clusters
- Given: a set of objects and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
  - Globally optimal: exhaustively enumerate all partitions
  - Effective heuristic method: K-means algorithm

#### **K-Means**

#### **Algorithm**

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

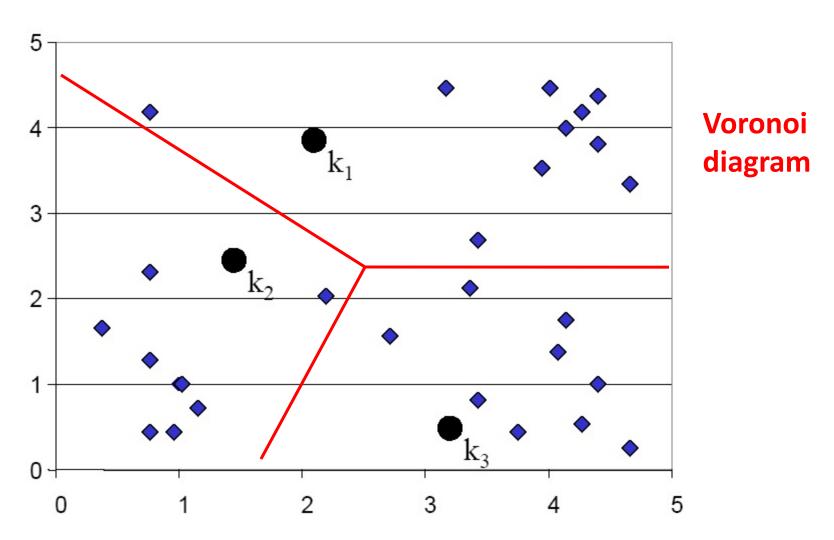
#### Iterate -

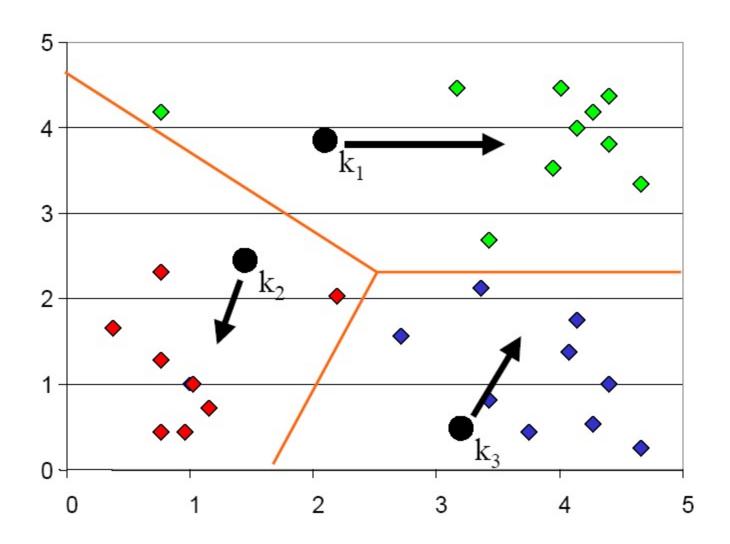
- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

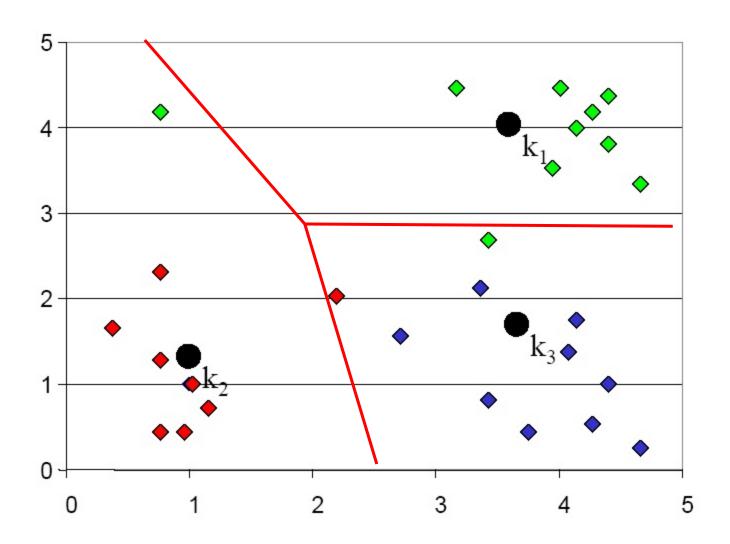
$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

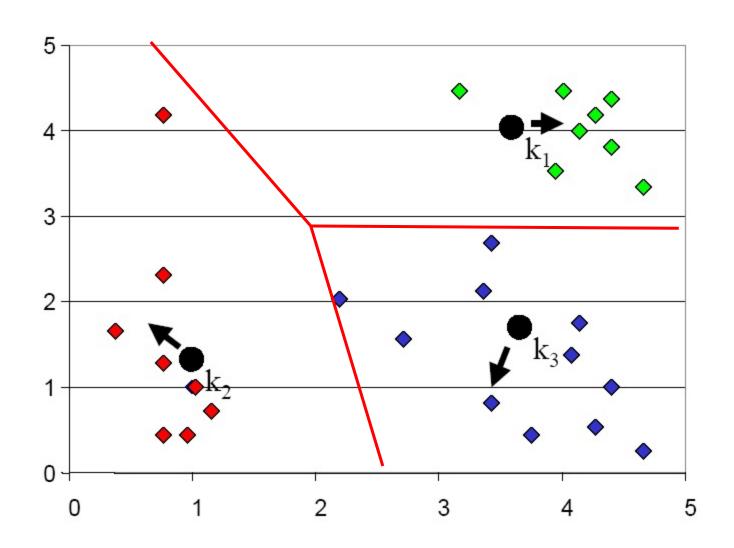
#### Termination –

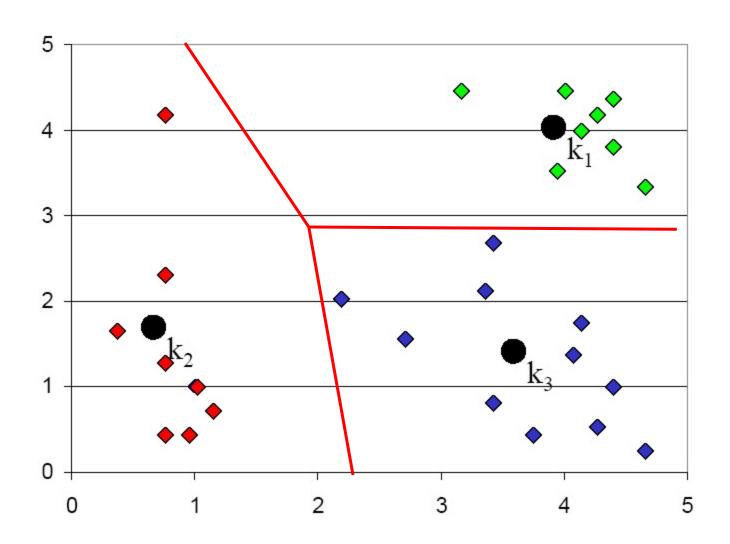
If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.











### K-means Recap ...

Randomly initialize k centers

$$\square$$
  $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$ 

### K-means Recap ...

Randomly initialize k centers

$$\square$$
  $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$ 

**Iterate** t = 0, 1, 2, ...

Classify: Assign each point j∈{1,...m} to nearest center:

$$\Box C^{(t)}(j) \leftarrow \arg\min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2$$

# K-means Recap ...

Randomly initialize k centers

$$\square \ \mu^{(0)} = \mu_1^{(0)}, \dots, \ \mu_k^{(0)}$$

**Iterate** t = 0, 1, 2, ...

Classify: Assign each point j∈{1,...m} to nearest center:

$$\Box C^{(t)}(j) \leftarrow \arg\min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2$$

• Recenter:  $\mu_i$  becomes centroid of its points:

$$\square \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|^2 \qquad i \in \{1, \dots, k\}$$

 $\square$  Equivalent to  $\mu_i \leftarrow$  average of its points!

# What is K-means optimizing?

 Potential function F(μ,C) of centers μ and point allocations C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$
$$= \sum_{i=1}^{k} \sum_{j:C(i)=i} ||\mu_i - x_j||^2$$

- Optimal K-means:
  - $\square$  min<sub> $\mu$ </sub>min<sub>C</sub> F( $\mu$ ,C)
    - ➤ Is the K-means objective convex?

# K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

K-means algorithm: (coordinate descent on F)

(1) Fix  $\mu$ , optimize C

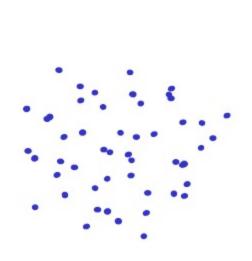
**Expected** cluster assignment

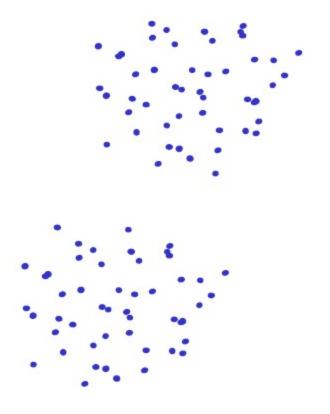
(2) Fix C, optimize  $\mu$ 

**Maximum** likelihood for center

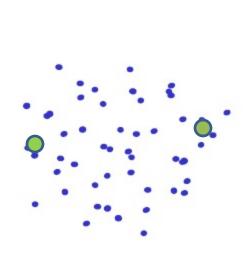
Generalization: EM (Expectation-Maximization) algorithm

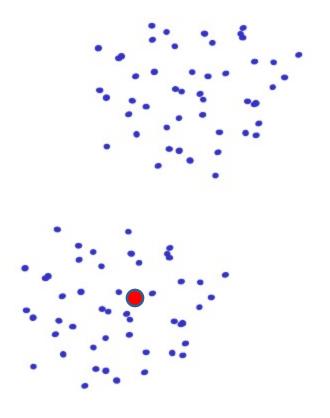
• Results are quite sensitive to seed selection.



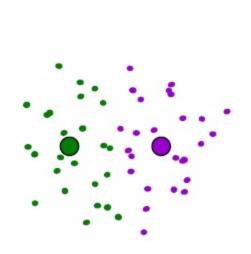


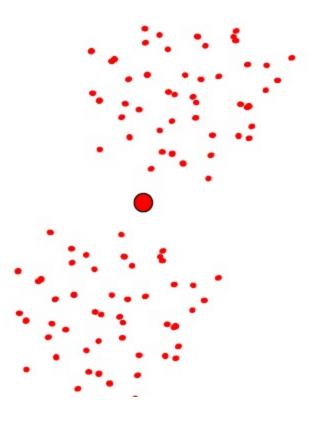
Results are quite sensitive to seed selection.





• Results are quite sensitive to seed selection.





- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
  - Try out multiple starting points (very important!!!)
  - k-means ++ algorithm of Arthur and Vassilvitskii
     key idea: choose centers that are far apart
     (probability of picking a point as cluster center 

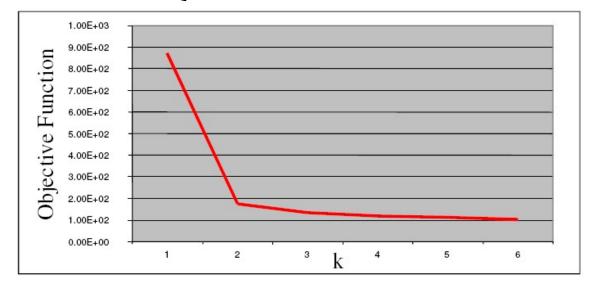
     distance from nearest center picked so far)

#### **Other Issues**

- Number of clusters K
  - Objective function

$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

- > Can you pick K by minimizing the objective over K?
- Look for "Knee" in objective function



#### **Other Issues**

- Sensitive to Outliers
  - use K-medoids



Shape of clusters
 Assumes isotropic, equal variance, convex clusters

# **Partitioning Algorithms**

- K-means
  - hard assignment: each object belongs to only one cluster

- Mixture modeling
  - soft assignment: probability that an object belongs to a cluster

Generative approach