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Linear Regression (Matrix-vector form)
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Least Square solution satisfies Normal
Equations

0J(B) —0 gives (ATA)B =ATY
o8 |3 px

pxp pxl

f(ATA) is invertible,

1) If dimension p not too large, analytical solution:

8= (ATA)1ATY fl(x) =xp

2) If dimension p is large, computing inverse is expensive O(p3)
Gradient descent since objective is convex (ATA> 0)
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Linear regression solution satisfies
Normal Equations

(ATABE=ATY
pxp pxl p x1

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of (A1 A)?

If A = USV !then

S-rxr

normal equations (SVT)B — (UTY)

rxp pxl rxl

r equations in p unknowns. Under-determined if r < p, hence no
unique solution.
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Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions

Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. & Ridge Regression
Bmap = arg mﬁln i;(Yi — X;8)% 4+ )\||8|3 (12 genal‘rgy)

—argmin (A8 - Y)T(AB-Y) +[5]3 A0

Buiap = (ATA +AI)TTATY
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Regularized Least Squares

Ridge Regression

a N (V. x3)2 2
ﬁMAP—argmﬁm 'Z(Y} Xi6)° + MB35 (12 penalty)

1=1

1
=argmin (A5 = Y)T(AS - Y) + B3 A2 0

s (ATA 4+ )\I) invertible ? 0



Understanding regularized Least Squares
min(AS —Y)" (A8 —Y) + Apen(8) = min J(5) + Apen(5)

Ridge Regression:

pen(8) = |16

Bs with constant J(8)
(level sets of J(B))

,82 ; Unregularized Least Squares solution
A

f3s with constant 12 norm
(level sets of pen(f3))
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Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

I”

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. & Ridge Regression
Bmap = arg mﬁm Z (Y; — X;8)° + M85 (12 genal’rgy)

1—=1
A i A>0
Buap = arg min S (Y — X;8)% + A\18ll1 Lasso -
=1 (11 penalty)

Many [3 can be zero — many inputs are irrelevant to prediction in high-
dimensional settings (typically intercept term not penalized) -



Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

= ° Ridge Regression
3 — Mmi Zy._X.32| 3(12 g g

1—=1
A i A>0
Buap = arg min S (Y — X;8)% + A\18ll1 Lasso -
=1 (11 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages
available) 23



Ridge Regression vs Lasso
mﬂin(Aﬂ “Y)T(AB-Y) + Apen(B) = mﬁin J(B) + Apen(B)

Ridge Regression: Lasso: Ideally 10 penalty,

pen(3) = |85 pen(3) = ||8|1 but optimization
becomes non-convex

s with !

Bs with constant J(8)
(level sets of J(B))

Bs with B2 Bs with
constant constant constant
12 norm \[ 11 norm 10 norm
\J . -\ .

Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates,

interpretable solution! 24



Matlab example

clear all lassoWeights = lasso(X,Y,'Lambda’, 1,

close all 'Alpha’, 1.0);
Ylasso = Xtest*lassoWeights;

n=80; % datapoints norm(Ytest-Ylasso)

p=100; % features

k=10; % non-zero features ridgeWeights = lasso(X,Y,'Lambda’,1,
'Alpha’, 0.0001);

rng(20); Yridge = Xtest*ridgeWeights;

X =randn(n,p); norm(Ytest-Yridge)

weights = zeros(p,1);

weights(1:k) = randn(k,1)+10; stem(lassoWeights)

noise = randn(n,1) * 0.5; pause

Y = X*weights + noise; stem(ridgeWeights)

Xtest = randn(n,p);
noise = randn(n,1) * 0.5;
Ytest = Xtest*weights + noise;



Matlab example

Test MSE = 33.7997

Lasso Coefficients

Test MSE = 185.9948

_ Ridge Coefficients




Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model Ff(X) = X3

Y=f(X)+e=XB"+e¢

e ~N(0,0°I) Y ~ N(XB*,c°I)

O0-0-00-00-00-0-0-0-O. fa aWaWaWa'a aWalaWalalill e 6 Wa)

AR A%

X
BumLe = arg max log p({Yi} 1B, 0%, { X))
| |

|

Conditional log likelihood

n
=argmin 3 (X6 - Y;)? =3
1=1

Least Square Estimate is same as Maximum Conditional Likelihood
Estimate under a Gaussian noise model | 27



Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

BI\/IAP — arg mﬁax log _‘p({Yi}?:ﬂﬁa 027 {Xq;}‘?’;HOQ p(B)
\ J J

Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P /27

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
1=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” 28




Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Buap = arg max log p({Yi} 1|ﬁ, 2 (X +|09p(6)

Y
Conditional Iog likelihood log prior

Il) Laplace Prior

11d

B; ~ Laplace(0,t) p(B;) x e~ 1Bil/t

n
Buar = argmin 3 (¥; - X;3)% + M|Bl1 Lasso
1=1
constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “sparse” 29




Polynomial Regression degree i
/

Univariate (1-dim) f(X) = Bg + 51X + 3o X2 + - + B X™ = X3

case.

where X =[1 X X2...X™],8=1[B1...08m]%

f=(ATA)"ATY fn(X) =X

1 X X7 ... X7
where A = : ‘. :

1 X, X7 ... XM

Multivariate (p-dim) f(X) = g, + BlX(l) 4+ 52X(2) 44 BpX(p)

case: p p - v pp -

+ Z Z Bin(Z)X(]) 4+ S: S: S: x @) x () x (k)
i=1 j=1 i=1 j=1 k=1

+...terms up to degree m
30



Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1
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What is the right order? Recall overfitting!
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Regression with nonlinear features

| ¢o(X)
F(X) =30 B;X7 = 3T Bj¢;(X) ¢1(X)
S
Weight of Nonlinear

each feature features \/ D> (X)

In general, use any nonlinear features

e.g. eX log X, 1/X, sin(X), ...

3= (ATA)1ATY ¢:0(X1) ¢1(X1) ¢m(:Xl)-

A= : . .
_¢O(Xn) ¢1(Xn) ¢m(Xn)_

]?n(X) — XB X = ¢0(X) ¢1(X) Qbm(X) 32



