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Logistic function as a Graph
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Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sigmoid (more
recently ReLU — next lecture) units :
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Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)
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Two layers of logistic units Highly non-linear decision surface



Neural Network
trained to drive a

car!
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Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'°
e Connections per neuron ~ 10*7?
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process



Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wo+ Z W;T;)
)

1-Hidden layer, o(x) = ol|lwg+ Y. wha(wg +3 w?%)
1 output NN: n ‘ r |
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Training Neural Networks - 12 loss

W —argmin 4

network
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Where f(xl) = o(xl) , output of neural network for training point x'

Train weights of all units to minimize sum of squared errors of

predicted network outputs

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w] Using all training data D

2.W — W — HVED[QE]
1

Epld] = 5, (v' - o)

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D

1. Compute the gradient VE| [u]
2. W < W —nVE [u]
1

E (W] = §(y| — o})?
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if n
made small enough



Training Neural Networks
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o(x) is the sigmoid function
1
1= g™
Nice property: %f—) = Differentiable
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Training Neural Networks
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o(x) is the sigmoid function
1
l+e™®
Nice property: %f—) =o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation



Gradient Descent for 1 sigmoid unit
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Gradient Descent for 1 sigmoid unit
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Gradient descent for training NNs

Gradient descent via Chain rule for computing gradients
= Back-propagation algorithm for training NNs



Backpropagation Algorithm (MLE)
using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs

d < o(1l—o0)(y—o)

4. Update each network weight w; ;
Wi j < Wi ;j + Aw;
where

Aw,f,j = 775j‘0i.

> Using Forward propagation

y = label of current
training example

w; = wt fromii to j

Note: if i is input variable,
Oi = Xi



Gradient Descent for 1 hidden layer

1 output NN
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Gradient Descent for 1 hidden layer
1 output NN
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Backpropagation Algorithm (MLE)
using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs
2.

0 o(l —o)(y—o)
3. For each hidden unit A

Op < op(1 — op)wpd
4. Update each network weight w; ;

Wi Wi ; + Aw;;

where

Awm = 775j01ﬁ‘

> Using Forward propagation

y = label of current
training example

O = unit output
(obtained by forward
propagation)

w; = wt fromii to j

Note: if i is input variable,
Oi = Xi



Backpropagation Algorithm (MLE) head id b whod hood
using Stochastic gradient descent N .

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit % y, = label of current

| training example for
O = ox(1 — o) (y, — ox) output unit k
3. For each hidden unit h Ok = Unit output
Snon(l—o0p) = whibk (obtained by forward
k€outputs propagation)

4. Update each network weight w; ; Wi = wt from i to |
ij =

Wi j < Wi; + Aw;

where Note: if i is input variable,

O; = X;
Aw; j =nd;0;



HW2

» Classification — cross-entropy error metric

» Can implement backpropagation with matrix-vector products — uses
matrix-vector calculus heavily



Note on numerator vs denominator
layout



More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights





