Neural Networks

Aarti Singh

Machine Learning 10-315
Sept 27, 2021

ACHI

Logistic function as a Graph

1
T 1+ exp(—(wo + >, wi X;))

Output, o(x) = o(wg + Z w; X;)

Sigmoid Unit

a O—L =
net =2 w; x; L
=0

Bl o = G(net) = g

l+e

Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sigmoid (more
recently ReLU — next lecture) units :

 Output layer, Y

w ,
— _
- - - - ~
- ’- - -~ -
b - N _"
> L
\ X - , ’

Hidden layer, H

Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)

4000

a head

OUtpUt s nid
+ hod
head hid layer A who'd hood ¢ had
' e ¢ hawed
' , 4699 v heard
o heed
< hud
B2 (H2) » who'd
~ hood
1000
500
Q 500 1000 1400
F1 (Hz)

Two layers of logistic units Highly non-linear decision surface

Neural Network
trained to drive a

car!

Straight
Ahead

Sharp
Right

30 Output
Units

30x32 Sensor
Input Retina

Weights to output units from one hidden unit
FIERY

Weights of each pixel for one hidden unit

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'°
e Connections per neuron ~ 10*7?
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wo+ Z W;T;)
)

1-Hidden layer, o(x) = ol|lwg+ Y. wha(wg +3 w?%)
1 output NN: n ‘ r |

\ Op,]

Training Neural Networks - 12 loss

W —argmin 4

network

W « arg mVIi/n Z(?Jl — F(ah))? Learned neural
[

!

Where f(xl) = o(xl) , output of neural network for training point x'

Train weights of all units to minimize sum of squared errors of

predicted network outputs

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w

ﬂ}radient

V|

Training rule:

i.e.,

_

—

o)

OF OF
Owy’ Ow,’

AW = —V E[7]

A

OF
YT g,

.

ow,,

-/

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w] Using all training data D

2.W — W — HVED[QE]
1

Epld] = 5, (v' - o)

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D

1. Compute the gradient VE| [u]
2. W < W —nVE [u]
1

E (W] = §(y| — o})?
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if n
made small enough

Training Neural Networks

—D—

ner = Z w i X i |
=0

o = G(net) = —
l+e
o(x) is the sigmoid function
1
1= g™
Nice property: %f—) = Differentiable
A. o(x)(1- 5(x)) C. - 5(x)

B. o(x) o(-x) D. o(x)?

Training Neural Networks

)0

=) w: x: |
ner gb“l"‘l o = G(net) =

-net
l+e

o(x) is the sigmoid function
1
l+e™®
Nice property: %f—) =o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

Gradient Descent for 1 sigmoid unit

B>

$ @ O

ner = Z \-t"i \l |
=0

o = G(net) = =
l+e

OE 0 12“_)y
8wi_8'w-i2_|_€Dy 4 :%(yl—ol)(—

t
Gradient of the sigmoid function 9o(net) = o(net)(1 — o(net)) = o(1 — o)
output wrt its input ne
0
Gradient of the sigmoid unit ° _
Wy

output wrt input weights

Gradient Descent for 1 sigmoid unit

d G
ner = E \-tf‘i \l |
=0

o = G(net) = —
l+e

dol)
8w,:

OE 0 12“_)y
8wi_8'w-i2_|_€Dy 4 =%(y|—ol)(—

o (net) = o(net)(1 — o(net)) = o(1 — o)

Gradient of the sigmoid function
output wrt its input

0o do Onet

Ow; ~ Onet’ ow; = ol —o)z;

Gradient of the sigmoid unit
output wrt input weights

Gradient descent for training NNs

Gradient descent via Chain rule for computing gradients
= Back-propagation algorithm for training NNs

Backpropagation Algorithm (MLE)
using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs

d < o(1l—o0)(y—o)

4. Update each network weight w; ;
Wi j < Wi ;j + Aw;
where

Aw,f,j = 775j‘0i.

> Using Forward propagation

y = label of current
training example

w; = wt fromii to j

Note: if i is input variable,
Oi = Xi

Gradient Descent for 1 hidden layer

1 output NN
o = slwr Zwpt) = s 7&“‘“‘0{“}
¢ A , .
6, = s(whp ZLh) 2 o TUR)
= e vi—ol)? _ . - 9o
ow; ow; 2 J_;;D(y ol)" = %(yl ol) (awi)
i | % _ o(1 —o)o
Gradient of the output with Dws h

respect to wy,

Gradient Descent for 1 hidden layer
1 output NN

s(T o)

Vi
>3

o = & T ?Ew,:OR)

£

A v 5
O = s (uf + Zly jx;> s ?;Loi 7&}

'

8E 8 1 60| :

ow; OJw; 2 J_eD(y) %(yl ol) (8w,~)

Gradient of the output with 0o _ 090 9oy

respect to input weights wh, o dop " wl
/

= 0o(1 — 0)op(1 — op) wpx;

Backpropagation Algorithm (MLE)
using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs
2.

0 o(l —o)(y—o)
3. For each hidden unit A

Op < op(1 — op)wpd
4. Update each network weight w; ;

Wi Wi ; + Aw;;

where

Awm = 775j01ﬁ‘

> Using Forward propagation

y = label of current
training example

O = unit output
(obtained by forward
propagation)

w; = wt fromii to j

Note: if i is input variable,
Oi = Xi

Backpropagation Algorithm (MLE) head id b whod hood
using Stochastic gradient descent N .

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit % y, = label of current

| training example for
O = ox(1 — o) (y, — ox) output unit k
3. For each hidden unit h Ok = Unit output
Snon(l—o0p) = whibk (obtained by forward
k€outputs propagation)

4. Update each network weight w; ; Wi = wt from i to |
ij =

Wi j < Wi; + Aw;

where Note: if i is input variable,

O; = X;
Aw; j =nd;0;

HW2

» Classification — cross-entropy error metric

» Can implement backpropagation with matrix-vector products — uses
matrix-vector calculus heavily

Note on numerator vs denominator
layout

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights

