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Discriminative Classifiers

Bayes Classifier:
f*(z) = arg max P(Y =y|X =x)
=y

= argmax P(X =z|Y =y)P(Y =y)
=y

Why not learn P(Y | X) directly? Or better yet, why not learn the
decision boundary directly?

* Assume some functional form for P(Y|X) or for the
decision boundary

* Estimate parameters of functional form directly from
training data

Today we will see one such classifier — Logistic Regression



Logistic Regression

Assumes the following functional form for P(Y | X):
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Features can be discrete or continuous! z



Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):
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Decision boundary:

P(Y =1|X)
P(Y =0|X)
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(Linear Decision Boundary)




Training Logistic Regression

How to learn the parameters wy, Wy, ... Wy? (d features)
Training Data  {(x(),y@)n_, x0 =W xW)
Maximum Likelihood Estimates

n . .
WNLE = arg max 1] P(X(J),Y(J)|w)
j=1

But there is a problem ...

Don’t have a model for P(X) or P(X|Y) — only for P(Y|X)



Training Logistic Regression

How to learn the parameters wy, Wy, ... W4? (d features)
Training Data  {(x),y()}n_, xO0) = (xW . xy

Maximum (Conditional) Likelihood Estimates

n . .
WNMCOLE = arg max 11 P(Y(3)|X(3),w)
j=1

Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!



Expressing Conditional log Likelihood
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I(w) = In HP(yj|Xj, W)
J



Expressing Conditional log Likelihood

1
1+ exp(—wo — Zz szZ)
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Good news: [(w) is concave function of w !
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Expressing Conditional log Likelihood

1
PY =1X =
( | ,QU) 1+ exp(—wo — Zz szZ)
1
PlY =0/ X,w) =

1+ exp(wo + >, wiX;)

[(w) In HP(yj|xj,W)

J

| d . d :
— Z yj(wo—l—sza:‘Z)—|n(1+€$p(wo‘|‘zwzx}?))

J

Good news: [(w) is concave function of w !

Bad news: no closed-form solution to maximize /(w)

Good news: can use iterative optimization methods (gradient ascent)



That’s M(C)LE. How about M(C)AP?

p(w|Y,X) o P(Y | X,w)p(w)

* Define priors on w

2
_ ion: 1 %
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distribution, zero mean, identity ; K\ 27
covariance

Zero-mean Gaussian prior
— “Pushes” parameters towards zero
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» What happens if we scale z by a large constant? 2

logistic (z)
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Logistic
function 1
(or Sigmoid), o(z) =
1 + exp(—2)

logistic (z)
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» Poll: What happens if we scale z (equivalently weights w) by a large
constant?

A) The logistic classifier decision boundary shifts towards class 1
B) The logistic classifier decision boundary remains same
C) The logistic classifier tries to separate the data perfectly

D) The logistic classifier allows more mixing of labels on each side of
decision boundary

14



That’s M(C)LE. How about M(C)AP?

p(w|Y,X) o P(Y | X,w)p(w)

2
R
p(w) = H 62/~z2
TRV 2T
* M(C)AP estimate ’

Zero-mean Gaussian prior

n
* __ J | xJ
w* =argmaxin |p(w) H P(y’ | xI,w)

=1
n . d a2
w*=argmax » InP(y |x),w) - > 5
W = — 2K
=1 1=1
. . . \ l
Still concave objective! !

Penalizes large weights | .




Iteratively optimizing concave function

* Conditional likelihood for Logistic Regression is concave
« Maximum of a concave function can be reached by

Gradient Ascent Algorithm
Initialize: Pick w at random

Gradient:

l(w) ol(w)  Al(w)

VAR

Vwl(w) = | ¥

owg Owg

Update rule: / Learning rate, nN>0
Aw = nVwl(w)

WD O 4 OUW) Ol(w)

(4
w ow; |,
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Effect of step-size n

[(w) (W)

Large n => Fast convergence but larger residual error
Also possible oscillations

Small n => Slow convergence but small residual error
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Gradient Ascent for M(C)LE

Gradient ascent rule for wy:

. d . d .
[(w) = Z {yj(wo + szaz‘g) —In(1 4 exp(wg + szazg))}

J
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Gradient Ascent for M(C)LE

Gradient ascent rule for wy:

. d . d .
[(w) = Z {yj(wo + szaj‘g) —In(1 4 exp(wg + szazg))}

J

d
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Gradient Ascent for M(C)LE
Logistic Regression

Gradient ascent algorithm: iterate until change < ¢

wi T wf? + 93l - PO = 1], w®))
J

Fori=1,...,d,

wi(H_l) < wz-(t)—l—nZa:‘g[yj—P(Yj =1 | x7, w(t))]
] l l

|

Predict what current weight
thinks label Y should be

repeat

* Gradient ascent is simplest of optimization approaches

— e.g. Stochastic gradient ascent, Momentum methods, Newton method,
Conjugate gradient ascent, IRLS (see Bishop 4.3.3) 0



M(C)AP — Gradient

 Gradient =
_ =

p(w) _1;15; o €

n . . . .
a@ n [p(w) H Py |X=7,W)] Zero-mean Gaussian prior

\
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Y Y

Same as before
L X

K2 Extra term Penalizes large weights

Penalization = Regularization

21



M(C)LE vs. M(C)AP

e Maximum conditional likelihood estimate

n
e J | ~J
w* = arg maxIn Ll:[lP(y | x ,w)]

wi(t_'_l) < wi(t) —I—Ung[yj —P(Y =1| xJ, w(t))]
J

 Maximum conditional a posteriori estimate

n
* J | xJ
w" = arg maxIn [p(w) -Hl P(y) | x ,W)]
J:

wi ™ (t)+77{ >+Zazf'[y P<Y=1xj,w<t>>]}
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Logistic Regression for more than 2
classes

Logistic regression in more general case, where Y &lyy,...,Y¢!}

for k<K

d
ex + >M¢ L wp X
P(Y =yl X) = Poko ¥ iy WiiXi)

1+ 25 exp(wjo 4+ Ty wyi Xy)

for k=K (normalization, so no weights for this class)

1
1+ Y5 exp(wjo + 24 wjiX;)

P(Y = yg|X) =

Predict f*(z) = arg max P(Y = y|X = x)
=y

Is the decision boundary still linear? .



Comparison with Gaussian Naive Bayes
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Gaussian Naive Bayes vs. Logistic
Regression

Set of Gaussian

Naive Bayes parameters <:> Set .°f Logistic
(feature variance Regression parameters

independent of class label)

* Representation equivalence (both yield linear decision
boundaries)

— But only in a special case!!! (GNB with class-independent
variances)

— LR makes no assumptions about P(X|Y) in learning!!!

— Optimize different functions (MLE/MCLE) or
(MAP/MCAP)! Obtain different solutions
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Experimental Comparison egordaro)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features
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Gaussian Naive Bayes vs. Logistic
Regression

If conditional independence assumption holds, then GNB has
lower large sample error

If conditional independence assumption DOES NOT hold, then
GNB has higher large sample error

— But if converges faster (to its higher large sample error) as
the parameter estimates are not coupled
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What you should know

LR is a linear classifier
LR optimized by maximizing conditional likelihood or
conditional posterior
— no closed-form solution
— concave ! global optimum with gradient ascent
Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR
— Solution differs because of objective (loss) function
In general, NB and LR make different assumptions
— NB: Features independent given class ! assumption on P(X]Y)
— LR: Functional form of P(Y|X), no assumption on P(X]Y)
Convergence rates

— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit
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