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Linear Regression (Matrix-vector form)
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Least Square solution satisfies Normal

Equations
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f(ATA) is invertible,

1) If dimension p not too large, analytical solution:

8= (ATA)1ATY fl(x) =xp

2) If dimension p is large, computing inverse is expensive O(p3)
Gradient descent since objective is convex (ATA> 0)
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Linear regression solution satisfies

Normal Equations A
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Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of (A1 A)?
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Under-determined if r < p, hence no unique solution.



Regularized Least Squares
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What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions

Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. & Ridge Regression
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Understanding regularized Least Squares

min(AS — Y)' (A —Y) + Apen(8) = min J(5) + Apen(5)
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Unregularized Least Squares solution
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Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions

Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. & Ridge Regression
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Many [3 can be zero — many inputs are irrelevant to prediction in high-
dimensional settings (typically intercept term not penalized) .



Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)
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No closed form solution, but can optimize using%ub—gradient descent (packages

available) 9



Ridge Regression vs Lasso
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Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates

Good for high-dimensional problems — don’t have to store all coordinates,
interpretable solution!
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= Matlab example

clear all lassoWeights = lasso(X,Y,'Lambda’, 1,
close all 'Alpha’, 1.0);
Ylasso = Xtest*lassoWeights;
n=80; % datapoints norm(Ytest-Ylasso)
p =100; % features
k=10; % non-zero features ridgeWeights = lasso(X,Y,'Lambda’,1,
= 'Alpha’, 0.0001);
rng(20); Yridge = Xtest*ridgeWeights;
X =randn(n,p); norm(Ytest-Yridge)
weights = zeros(p,1);
weights(1:k) = randn(k,1)+10; stem(lassoWeights)
noise = randn(n,1) * 0.5; pause
Y = X*weights + noise; stem(ridgeWeights)
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Xtest = randn(n,p);
noise = randn(n,1) * 0.5;
Ytest = Xtest*weights + noise;



Matlab example

Test MSE = 33.7997 Test MSE = 185.9948
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Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model f(X) = X3
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Least Square Estimate is same as Maximum [
Conditional Likelihood Estimate under a Gaussian noise model | 13



