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In-person Expectations

* Please do not come to class if you feel sick or have symptoms
of a potentially contagious illness.

* This holds even if you know you do not have COVID-19 but
have symptoms that may be a sign of other contagious
illnesses, such as a cold or flu.

* Coming to class when sick is NOT a sign of hard work. Be
responsible, care for your classmates and campus community.



Announcements

e (Canvas fixed

* Late days —total 4, no more than 1 for a QnA, no more than 2
fora HW

* Tentative HW due dates have been posted

e QnAl out today
—due in 1 week, Sept 8 11:59 pm ET

e Office hours Day Time Location Staff
Mondays 1:30 pm TBA Christina
Tuesdays 3:30 pm TBA Spoorthi
Wednesdays 2:30 pm TBA Haitian
Zoom (link

Thursdays 10:30 am Aarti

on Canvas)


https://canvas.cmu.edu/courses/25787/external_tools/8366

Notion of “Features aka Attributes”

Input X ¢ X

remember to wake up when class ends

Document/Article =
wake ends to class remember up when

How to represent inputs mathematically?
« Document vector X > ldeas?
— list of words (different length for each document)

— frequency of words (length of each document = size of
vocabulary), also known as Bag-of-words approach 3 Why might

Misses out context!! this be
— list of n-grams (n-tuples of words) limited?
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Notion of “Features aka Attributes”

Input X ¢ X

Market information

How to represent inputs mathematically?

* |Image X = intensity/value at each pixel, fourier transform
values, SIFT etc.

* Market information X = daily/monthly? price of share for past
10 years



Distribution of Inputs

Input X ¢ X

Discrete Probability Distribution P(X) = P(X=x) |
e.g. P(head) =%, P(word x in text) =

Probabilities in a distribution sum to 1
> P(X=x)=1 P(tail) =1 —p(head), >, p, =

Continuous Probability density p(x)  P(a<=X<=b) =ff p(x)dx
e.g. p(brain activity)

Probability density integrate to 1
[p(x)dx =1




PXY)

Distributions in Supervised tasks

OO B (e g
nput X e x P k=7

* Distribution learning also arises in supervised learning tasks
e.g. classification

P(Y=y) Distribution of class labels
P(X =x |Y =vy) Distribution of words in ‘news’ documents
Distribution of brain activity under ‘stress’

The 16th- and 17th-century English and German
press output compared

= English titles per decade according to ESTC data

Olaf simons’10

P(Y =y|X =x) Distribution of topics given document ,



Classification

Goal: Construct prediction rule f : X — Y
-7(9
High Stress
>  Moderate Stress
Low Stress
Input feature vector, X Label, Y

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case:
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

—9-00-000000-00¢00 0000 ® Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X : :
(X) subject

Model X and Y as random variables with joint distribution Pyy

Training data {X, Y.}"._; ~iid (independent and identically distributed)
samples from P,y

Test data {X,Y} ~ iid sample from P,y
Training and test data are independent draws frorr@istribution



Bayes Classifier

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
Py O Test
fX) ' subject

Model X and Y as random variables

P(Y = +|X) P(Y = «|X)

For a given X, f(X) = label Y which is more likely
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f(X) = arg max P(Y =y|X =)
— :y
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Optimality of Bayes Classifier
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P(A,R=P(AIR) AR)
Bayes Rule ~XR1A LAY

™ PX|Y)P(Y)

Bayes Rule: P(Y|X) = PIX) &
PY =yl X =z) = H= ﬂ?Xzzy)x];(Y =9 &

To see this, recall:
P(X,Y) = P(X]Y) P(Y)

P(Y,X) = P(Y[X) P(X)

Thomas Bayes 12



Bayes Classifier — equivalent form

Bayes Rule: P(Y|X) = P(X]LBE;(J;(Y)
PO =i =) =SS

Bayes classifier:

———

f(X)= arg }n)ax@(Y = y|X = a:‘)}
=y

= argmax P(X =z|Y =y)P(Y = y)
=y
\ J\ )
Y |

Class conditional Distribution of class

Distribution of features

—_— 13



~ Bayes Classifier

= v
_0-00-000000-90(0—00—00- ® Stress
\ low high
® No Stress
X, average brain activity in “Amygdala”
Py O Test

fX) ' subject

f(X) = arg max P(X =x|]Y =y)P(Y =vy)

_yl i J\ i )
Class conditional Class distribution

Distribution of features =

——
We can now consider appropriate distribution models for the two terms:
Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y) y



Modeling class distribution

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling Class distribution P(Y=y) = Bernoulli(0)
z <=

P(Y =@)=0 P(Y =@)=1-6

Like a coin flip
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Modeling class distribution

® High Stress

~9-00-000000-000-10 0000
low high
o @ Low Stress
X, average brain activity in “Amygdala”

f(X) : - O fest

subject

» How do we model multiple (>2) classes?

Modeling Class distribution P(Y) = Multinomial(py,pw,p\)
P(Y =@)=py P(Y =0)=pu P(Y =@)=p,

N PhtpPmtp =1

Like a dice roll L’
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Modeling class conditional
distribution of features

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling class conditional distribution of feature P(X=x|Y=y)
» What distribution would you use?

E.g. P(X=x|Y=y) = Gaussian N(u,,0%)
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1-dim Gaussian distribution

X is Gaussian N(u,0?)

P(X =z|u,0) =
( 1w, 0) 502 € 202

-1 u:O 1 2 3 =0 -2 -1 u=0

L —@-w? =
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Why Gaussian? X7
s X)_': 6 )
| peEx] w77
* Properties - (-]
— Fully Specified by first and second order statistics
* Uncorrelated < Independence
— X, Y Gaussian => aX+bY Gaussian

— Central limit theorem: if X, ..., X, are any iid random
variables with mean p and variance 6% < o

then

1
\/5(5271‘1:1)(1' —u)~N(0,c?)
" 2 z <«
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1-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ Y J\ Y )
Learn parameters 6, 1, CI_ass-con.ditionaI Class distribution
5, from data > D|str|but|jon of features \
Gaussian(p,, 6% Bernoulli(6)
’.' &

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)

A9

| 20
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1-dim Gaussian Bayes classifier

f(X) = arg 1rpax P(X =z|Y =y)P(Y =vy)

=y
\ J\ )
Class conditional' Clz'ass distribution
Distribution of features
» What decision j \
boundaries can we . .
get in 1-dim? Gaussian(p,, 62,) Bernoulli(6)

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)

Sess

AR

, ¢ ‘.s
v . — 21
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d-dimensional inputs

High Stress
>  Moderate Stress
Low Stress
'
Input feature vector, X:K/\’- Label, Y
A
Modeling class conditional distribution of feature P(X=x|Y=y)
E—
» What distribution would you use? N(f.(@")
J 4
E.g. P(X=x|Y=y) = Gaussian N(u,Z,) o Y
v
dx x(0\)<o(
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- € [ K- eDR1D ON -E1%5)) ;iae E[(Xi-exa )\
d-dim Gaussian distribution

i

X is Gaussian N(, 2) W is d- d|m vector, 2 is dxd dim matrix

'{EL( o 2_0('}"'5@')_1

P s = mw) b o (-3
X, s
=o0°l = Q\
d=2 v 54 u
X= [Xl; Xz] =




d-dim Gaussian Bayes classifier

f(X)

= arg max P(X =z|Y =y)P(Y =y)

=Y
\ J\ )

Learn parameters 6, y,,
2, from data

| |
Class conditional Class distribution

Distribution of features \

/

Gaussian(p,, Z,) Bernoulli(0)

X2
A

P(Y = O)P(X =ac|Y = o)

E- @ P(Y:o)P(X:£E|Y: °)

Z 24
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d-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Yzyl T J \ (—'( J
» What decision Class conditional Class distribution
boundaries can we  Distribution of features
get in d-dim? e
Gaussian(u,,Z,) Bernoulli(0)

A

Decision Boun

X1




