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Learning Theory

* We have explored many ways of learning from
data

 But...

— Can we certify how good is our classifier, really?
— How much data do | need to make it “good enough”?
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PAC Learnability
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* True function space, F  feF M

 Model space, H f.eM

Fis PAC Learnable by a learner using H if

there exists a learning algorithm s.t. for all functions in
F H, for all distributions over inputs, forall0<¢g, 8 <1,

with probability > 1-9, the algorithm outputs a model
h e Hs.t. error,,(h)<e¢

in time and samples that are polynomial in 1/¢, 1/6
o LD




A simple setting

e Classification W

— mi.i.d. data points
— Finite number of possible classifiers in model class
(e g., dec. trees of depth d)

* Lets consider that a learner finds a classifier h
that gets zero error in training
— error,i,(h) = -+ g\ Lo ey =0

* What is the probability that h has more than ¢
true (= test) error?

— errory,(h) 2 €

o

fﬂ(hbﬁ) £+ ZE
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Even if h makes zero errors in training data, may make errors in test



How likely is a bad classifier to get m
data points right? M
Pl +Y) Z € 3‘"
* Consider a bad classifier hi.e. error,.(h) 2 €

—————————— s

* Probability that h gets one data point right
<1l-¢
* Probability that h gets m data points right

<(1-¢)m



How likely is a learner to pick a bad
classifier?

e Usually there are many (say k) bad classifiers in model class
hy, h,, ..., hy s.t. error,(h;))2€ i=1, ..,k

=

* Probability that learner picks a bad classifier = Probability
that some bad classifier gets O training error

. D
h R pAY
Prob( 1 gets 0 tral-nl.ng error O . 9(A\+P @)
h, gets O training error OR ... OR -
h, gets O training error :
i h_kg & )P Union
<P ini
rob(h; gets O training error) +'{ bound
Prob(h, gets O training error) + ... + Loose but
works

Prob(h, gets O training errorjr < k\\w)‘“
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How likely is a learner to pick a bad
classifier?

e Usually there are many many (say k) bad classifiers in the
class

hy, h,, ..., hy s.t. error,(h)2€ i=1, .,k

* Probability that learner picks a bad classifier I-¢ £ et

< k(1-¢)™ < [H]| (1-g)m< |H]| e&m
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~Ls Size of model class
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PAC (Probably Approximately Correct)
bound

 Theorem [Haussler’88]: Model class H finite, dataset
D with mi.i.d. samples, 0 <& < 1: for any learned
classifier h that gets O training error:

P(erroriruc() > ) <[[Hlemsss
mé

M- e
* Equivalently, with probability > 1 — 0 s
\r
S g Lawwrbed
errvort'rue(@_) <€ = v o

Important: PAC bound holds for all h with 0 training error, but
doesn’t guarantee that algorithm finds best h!!!



Using a PAC bound
|[Hlem < 9

* Given € and 9, yields sample complexity
In |H| + In 5

#training data, 1, >

v

— E

 Given m and 9, yields error bound
In|H| + In 5

m

error, € >




Poll et

Assume m is the minimum number of training examples sufficient
to guarantee that with probability 1 — 6 a consistent learner using
model class H will output a classifier with true error at worst .

Then a second learner that uses model space H' will require 2m
training examples (to make the same guarantee) if |[H' | =2|H]|.

A. True B. False

If we double the number of training examples to 2m, the error
bound & will be halved. ¢ L J’;

C. True D. False



Limitations of Haussler’s bound

* Only consider classifiers with O training error

h such that zero error in training, error,..,,,(h) =0 -~

* Dependence on size of model class |H|

[ C—

In|H|+ In 3
m >

€

what if |H| too big or H is continuous (e.g. linear
classifiers)?
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PAC bounds for finite model classes

H - Finite model class
e.g. decision trees of depth k
histogram classifiers with binwidth h

With probability > 1-9,
1) Forall h € Hs.t. error,,(h) =0,

errory,(h) <€ = In |H| + In 5 Haussler’s bound

m

12



What if our classifier does not have
zero error on the training data?

* Alearner with zero training errors may make
mistakes in test set

* What about a learner with error,,,;,(h) # 0 in training
set?

 The error of a classifier is like estimating the <
parameter of a coin!

error,, .(h) := P(h(X) 2Y) = P(H=1)=:0 ]

1 1 ~
error,,...(h) := — 1y v 2y = — 7, =:0
train - ZL: h(X;)#£Y; - EZ:
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Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x,,, where x; € {0,1} of
a coin with parameter 0. For O<e<1:
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Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1:

1 o 2
PGH—Z:BZ-EG) < Qe 2me
m <
1

Ly
5z PNOFY) =&

* For a single classifier h

2
P (erroryye(h ) — erroram(h )| > €) < 2 4™M¢
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Hoeffding’s bound for |H| classifiers

* For each classifier h:
. 2
P (Ierrortrue(hz’) — errortrain(hi)lz €) S@)E 2me

 What if we are comparing |H| classifiers?

Union bound

e Theorem: Model class H finite, dataset D with mi.i.d.
samples, 0 < e < 1: for any learned classifier h € H:

P qerrOrtrue(h) _ errortrain(h)l > E) < 2|H|€_2m€2§ 0

—

Important: PAC bound holds for all h, but doesn’t gllarantee that .
algorithm finds best h!!!



Summary of PAC bounds for finite
model classes

With probability > 1-0,
1) Forall h € Hs.t. error,,(h) =0,

error,,.(h) < & = In |[H| 4 1In § Haussler’s bound

m &

2) ForallheH
errory,(h) - error,y(h)| < & J

In|H|-|—In%K

2m

Hoeffding’s bound
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PAC bound and Bias-Variance tradeoff

P (lerroftrye(h) — €rrory,.qin(h)| >€) < Q‘H’€_2m€2§ 0

* Equivalently, with probability < | _ 5

2
In|H|+In%

_ _ 2m ¢

e Fixed m l N l
Model class m

complex small large M

erroryrye(h) < erroryeqin(h) + \

simple large small Corfesly
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Training vs. Test Error

In|H|+In3
With prob> 1 — ¢, €r'rOrtrye(h) < €rrory,qin(h) 4—/{\ >
—_ @
A T

\\ fixed # training data

Validation error

Training error

i — » Model

> .
overfitting Complexity

-

underfitting

Best
Model



What about the size of the model

class? 2
2|H|e 2™ < §
 Sample complexity

1 2
m > —(In]H| —|—In—>

* How large is the model class?
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Number of decision trees of depth k

Recursive solution:

> % (In|H| -+ In%)
Given n birlaJV attributes

~ =22\
H, = Number of binary decision trees of depth k
H; = 2 '
H, = (#choices of root attribute)
*(# possible left subtrees)
*(# possible right subtrees) =n*H,, *H,,

)
S
s
4
N
N
=

Write L, = log, H, log,, o
Lo=1= lg.2
L, =log, n+ 2L, _,=log, n+ 2(log, n + 2L,,) [
=log, n + 2log, n + 2%log, n + ... +2%(log, n + 2L,)
So L, =(2%1)(1+log, n) +1 21
-
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PAC bound for decision trees of depth k

AN
((2”“ —1)(1 +logon) + 1+ |092%)

~

In 2
m>_4

e Badl!!!
— Number of points is exponential in depth k!

* But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points
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Number of decision trees with k leaves

!mlz iz (In H| + |n2)
: . : 2\ 0
H, = Number of binary decision trees with k leaves

[, =2
H, = (#choices of root attribute) *
[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)
+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)
+ ...

+ (# left subtrees wth k-1 leaves)™*(# right subtrees wth 1 leaf)]

k—1
Hi =n Z H;Hy_; =nk1C, (C,., : Catalan Number)
| . i=1 Qe ——> | W)

Loose bound (using Sterling’s approximation):

< (k) lnn
H, < nk—1\22k—1j AV A




Number of decision trees

1 2

 With k leaves mZ a2 ('n H] A+ n E)

logy Hy < (k—1)logyn + 2k — 1 linear in k
number of points m is linear in #leaves A

* With depth k

log, H, = (2%1)(1+log, n) +1  exponential in k

number of points m is exponential in depth
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What did we learn from decision trees?

 Moral of the story:

Complexity of learning not measured in terms of size
of model space, but in maximum number of points
that allows consistent classification
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Rademacher Complexity

* Instead of all possible labelings, measure complexity
by how accurately a model space can match a
random labeling of the data.

For each data point i, draw random label - +
o
o] st. P(o,=+1)=)%=P(0,=-1)
— +
Then empirical Rademacher complexity of H is *
- 1 & o1y 1 ke
Rn(H)=E, |sup | — Y o;h(X, ke Un-k)
1) =5, foup (13- anixy )| ket

— =1
= [(W]) e



Finite model class

 Rademacher complexity can be upper bounded in
terms of model class size |H|:

~ 2In|H
Rm<H>g\/ n|H|

™m
L —

 Often Rademacher bounds are significantly better
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