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SVM - linearly separable case

n training points (Xq, o) Xp) + 5

d features X; is a d-dimensional vector ¥ .
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Primal problem: minimizey, %w.w “ ., . ;
(W.Xj -+ b) Y; > 1, Vja!,..h +
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w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)



Dual SVM - linearly separable case
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Use any one of support vectors with for any k where oy, > 0
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w_ _1




Dual SVM — non-separable case
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Dual SVM — non-separable case
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MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X
2. oy = 0
comes from 8_L — 0 Lntuition: :
& It C->eo, recover hard-margin SVM
Dual problem is also QP W = Z Y Xy v
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Solution gives as — Y — WX},

for any k where C' > ap. > 0




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!



Separable using higher-order features
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Dual formulation only depends on
dot-products, not on w!
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®(x) — High-dimensional feature space, but never need it explicitly as long
as we can compute the dot product fast using some Kernel K



Polynomial features ¢(x)

m — input features d — degree of polynomial
— d — 1) e
num. terms = d+m-—1 :( T m ) ~ m
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Dot Product of Polynomial features

d(x) = polynomials of degree exactly d
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The Kernel Trick! 4
(XX
maximizeg Zz o — %Zl,j oziozjyiyjK(Xi, X])
K(x;,x;) = P(x;) - P(x5)

>iaiy; = 0
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* Never represent features explicitly
— Compute dot products in closed form

e Constant-time high-dimensional dot-products for many
classes of features
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Common Kernels

Polynomials of degree d

d
Kuv)=(u-v v N
(1, v) ( ) _ hm* KXy K¥)
Polynomials of degree up to d o

K(u,v) = (u-v+ 1)

Gaussian/Radial kernels (polynomials of all orders — recall

series expansion of exp) ~ qu_f(ﬁf, ..
lu—v|?)_ © 0
K(u,v) =exp | — — —
()
Sigmoid

K(u,v) =tanh(nu-v +v)
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Mercer Kernels

What functions are valid kernels that correspond to feature

vectors @(x)? K(mND =glw): i(@

—_—
Answer: Mercer kernels K

e Kiscontinuous
* Kissymmetric

* Kis positive semi-definite, i.e. xX’Kx20forallx (g, %>

/ didy _—

Ensures optimization is concave maximization
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Overfitting

* Huge feature space with kernels, what about
overfitting???

— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting



What about classification time?

 For anew input x, if we need to represent ®(x), we are in trouble!

* Recall classifier: sign(w.®(x)+b) = %a'%n( %-&{3{4(&2('¢2‘))+|°>
A

w =) o;y;P(x;) &
i

i

Y- Sy 600
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b=y —wW.P(x}) ¢
- — R (i)

for any k where C > a5 > 0

e Using kernels we are cool!

K(u,v) = ®d(u) - (v)
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SVMs with Kernels

* Choose a set of features and kernel function
* Solve dual problem to obtain support vectors o
* At classification time, compute:

w-P(x) = 2@: oy K (%, %;)

b=y — ) oyl (xg,%;) m sign (W - ®(x) +b)

{
for any k where C > ap. > 0
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SVMs with Kernels

* |ris dataset, 2 vs 13, Linear Kernel




SVMs with Kernels

Iris dataset, 1 vs 23, Polynomial Kernel degree 2
Folynomial ~| [Dewel | 2 | | Separable Bound | 1 |

No. of Support vectors: 30 (25 0%)
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SVMs with Kernels

* |ris dataset, 1 vs 23, Gaussian RBF kernel
Gaussanfer e osena [0 [seperatie

Mo. of Suppart Wectors: 55 (45 53%)



SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel

Gaussian RBF | Sioma [ | Separable Bowndll [ 1 |

No. of Suppart Yectors: 41 (34 2%)
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SVMs with Kernels

* Chessboard dataset, Gaussian RBF kernel

No. of Suppart Vectors: 174 (58.0%)

<] pisens | separavi S| [ 1
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SVMs with Kernels

* Chessboard dataset, Polynomial kernel

Folynomial w| Dease | 10 | ] Separasle peund [ 1

No. of Support Vactors: 147 (49.0%)
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USPS Handwritten digits
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L 1000 training and 1000 test instances

Results:
SVM on raw images ~97% accuracy



Kernels in Logistic Regression
1 .

P =1lzw) = T o

* Define weights in terms of features:
W = Z aiCD(Xi) Yi
i

1

1 4 e~ (25 i ®(x;)-® (x)+b)
1

1 + e~ (s K (x,x;)+b)

PY=1|zw) =

* Derive simple gradient descent rule on a.
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SVMs vs. Logistic Regression

SVMs Logistic
Regression

Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!
Semantics of “Margin” Real probabilities
output




Can we kernelize linear regression?
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Linear (Ridge) regression

mﬁin N (Y - X;8)% + \18113 B=(ATA+ ) 1ATY &
1—=1

B

Recall

x; ] [ xW xP)
A= : = : e :
Xn | [ XY x P

Hence ATA is a p x p matrix whose entries denote the (sample)
correlation between the features

NOT inner products between the data points — the inner product
matrix would be %Twhich is n x n (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of AAT

—
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Ridge regression

min 3 V= X2+ AI8l2 B=(ATA+A)TATY

> T sw)
Similarity with SVMs
Primal problem: SVM Primal problem'
n
min Y 27 + A BII3 min CZ& —Hsz
121 i—=1 z
s.t. z; =Y, — Xzﬁ O(t' S.t. fz = max(l — Y, X, w, O)

—_—

z 2 -Wthk§-O

Lagrangian: w
Lazgd) = D> 22+ X817 + Zaz ~Y; + X,8)

=1 = _ wn (2D
a; — Lagrange parameter, one per training point | Tte
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Ridge regression (dual)

min 3 V= X2+ AI8l2 B=(ATA+A)TATY
— n

0L _ oM+ ZLX  dhc dzt
6‘2 SAY. B &

Dual problem:
maxmmZz —I—)\HBH2—|—Z% - Y + X;p)

a={o}fori=1,..,n

Taking derivatives of Lagranglan wrt 3 and z; we get

-
T
1
Dual problem: max e o AATa—a'Y &
& 4 4)\ —

n-dimensional optimization problem

v
» O
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Ridge regression (dual)

min 3 (G- X2 +AI8l2 B=(ATA+I)'ATY
1=1

—_— —m—————
= AT(AAT + \I)1Y
3 Grom welor
DL n¥h
Dual problem: T /
T 1 AAT S
moz}x —%—JQTAATO&—QTY :>&—< )\ —|—I> 2Y
) IQN
X 1 d 1
cangetback f=——A'a =AT(AAT + )Y y = AP
/ 2\ € - < [— _J —
Vx\tgi@htd\d A\¥tage of

: Weight of each training point (but typically not sparse
tréning po'udtsf 5 &P ( ypically P 3?3



Kernelized ridge regression

B=(ATA+))"'ATY

Using dual, can re-write solution as:

B=AT(AAT + AI)7'Y
nrn
How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

AAT involves only inner products between the training points
BUT still have an extra AT

Recall the predicted labelis f,(X) = X3 <

= XAT(AAT + A1) 'Y
e )
XX EECR

XAT contains inner products between test point X and training points!
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Kernelized ridge regression

B=(ATA +)D)'ATY fn(X) = X8

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

< VA
o Sy where  Kx (1) = 0(X) - 6(X)
~ [n(X) = If_X,(I~</+ A)TY wh K(i,j) = ¢(X;)- ¢(Xj)[

Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features ¢(X)! f(X) = ¢(X)S

=
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What you need to know

Maximizing margin

Derivation of SVM formulation

Slack variables and hinge loss v

Relationship between SVMs and logistic regression
— 0/1 loss

— Hinge loss 7
— Log loss

Tackling multiple class
— One against All /
— Multiclass SVMs

Dual SVM formulation
— Easier to solve when dimension high d > n

— Kernel Trick v
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