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Non-Parametric methods

Typically don’t make any distributional assumptions

As we have more data, we should be able to learn more
complex models

——

Let number of parameters scale with number of training data

Some nonparametric methods

Classification: Decision‘gees, k-NN \(&Nearest Neighbor)
classifier

Density estimation: k-yN, Histogram, Kernel density
. v
estimate

Regression: Kernel regression
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Kernel density estimate

* Histogram — blocky estimate ’
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* Kernel density estimate aka “Parzen/moving window
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Kernel density estimate
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boxcar kernel :

K(z)= %I(I),

(Gaussian kernel :

e 1 g
[\ (I) = ,—_G—I /2
V2T

Kernels

Any kernel
function that
satisfies

v
5
=
v
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Kernel density estimation

* Place small "bumps" at each data point, determined by the
kernel function.
* The estimator consists of a (normalized) "sum of bumps”.
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Img src: Wikipedia
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Gaussian bumps (red) around six data points and their sum (blue)

* Note that where the points are denser the density estimate
will have higher values.
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Choice of Kernels

boxcar kernel :

K(z) = % (z),

(Gaussian kernel :

% 1 2
K(z) = —e /2
V2T

Finite support

—only need local
points to compute
estimate

Infinite support

- need all points to
compute estimate

-But quite popular
since smoother
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Histograms vs. Kernel density
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A = h acts as a smoother.
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Nonparametric density estimation

~ 7

* Histogram o) = AleeBing
. ~ na;

* Kernel density est plz) = — /

Fix A, estimate number of points within A of x (n; or
n,) from data

Fix n,= k, estimate A from data (volume of ball

around x that contains k training pts)
s

* k-NN density est plz) = —
k,x

R
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Local Kernel Regression

* What is the temperature

in the room?
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at location x?

"Local" Average
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Local Kernel Regression @

Nonparametric estimator Col .:-..‘..':.',
Nadaraya-Watson Kernel Estimator

. n K (255

fn(X) = Z; %i@'Y}; Where w;i(X) = ST K XZXi)

Weight each training point based on distance to test
point

Boxcar kernel yields boxcar kernel :

local average K(x) = +1(2)
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power

Choice of kernel bandwidth h

h=
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Kernel Regression as Weighted Least

Squares
oo J , (X hXZ)
iR i
Weighted Least Squares o \5"
~ - 3(*} -

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set fiX)=P tant) . -
i.e.set fi B (a constan —-@.@_

Y ?
“X

-{’
X
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Kernel Regression as Weighted Least

Squares
? Xt ‘-Fo -.(7('\ = \
set f(X) =P (aconstant) i: W
I w; — Xy w; — — Y.
Pi=1 ] Yy K (S5
constant :
2 2k ‘
97 (5) =2 Z wi(B—-Y;) =0 Notice that Z w; = 1
op i=1 i=1
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Local Linear/Polynomial Regression

min 3w (D -V () =
1 =1

o < ?le(Xh Z)

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial
estimator obtained from (locally) weighted least squares

e set f(Xi) = fortB1(X;—X)+ 22 (X;—X) - +5p<x _x)?

(local polynomial of degree p around X)
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Summary

* Non-parametric approaches

Four things make a nonparametric/memory/instance

based/lazy learner:

1. Adistance metric, dist(x,X)) ﬁ
Euclidean (and many more)

2. How many nearby neighbors/radius to look at?
k, A/h

- <

3. A weighting function (optional)
W based on kernel K

4.  How to fit with the local points?
Average, Majority vote, Weighted average, Poly fit



Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
distributional assumptions

» Nonparametric models (not histograms) requires
storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.





