Non-parametric methods contd...

Aarti Singh

Machine Learning 10-315 Oct 13, 2021

Non-Parametric methods

- Typically don't make any distributional assumptions
- As we have <u>more data</u>, we should be able to learn more complex models
- Let number of parameters scale with number of training data
- Some nonparametric methods

Classification: Decision trees, k-NN (k-Nearest Neighbor) classifier

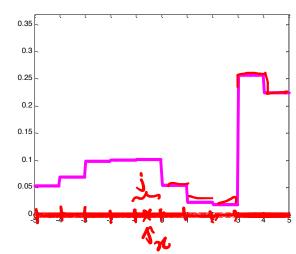
Density estimation: k-NN, Histogram, Kernel density estimate

Regression: Kernel regression

Kernel density estimate

Histogram – blocky estimate

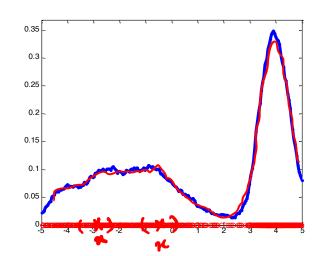
$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$



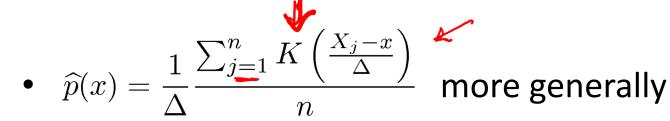
Kernel density estimate aka "Parzen/moving window

method"

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$

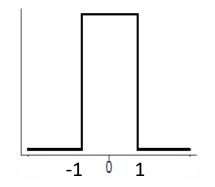


Kernel density estimate

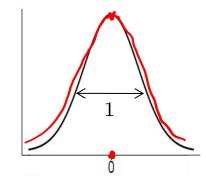


boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

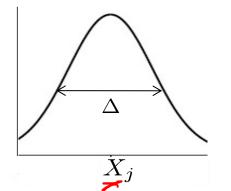


$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$



$$K\left(\frac{X_{j}-x}{\Delta}\right) = 1 |X_{j}-x| \le 1$$

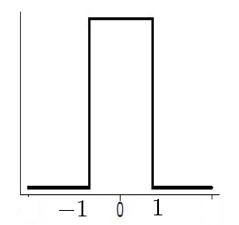
$$X_{j}-\Delta X_{j} X_{j} + \Delta$$



Kernels

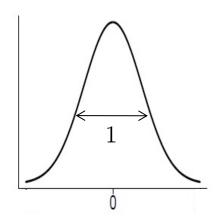
boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$



Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$



Any kernel function that satisfies

$$K(x) \geq 0,$$

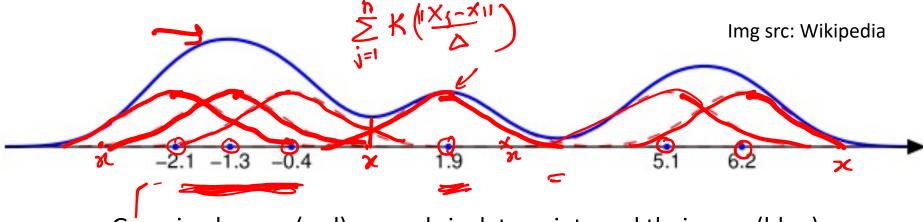
$$\int K(x)dx = 1$$

$$p(x) \geq P$$

$$\int p(x) dx = 1$$

Kernel density estimation

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".



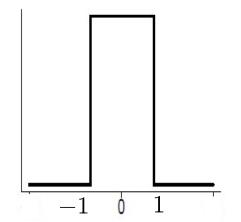
Gaussian bumps (red) around six data points and their sum (blue)

 Note that where the points are denser the density estimate will have higher values.

Choice of Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

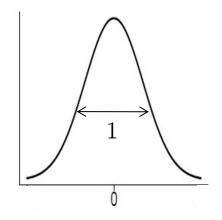


Finite support

only need local points to compute estimate

Gaussian kernel:

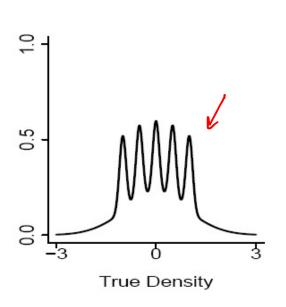
$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

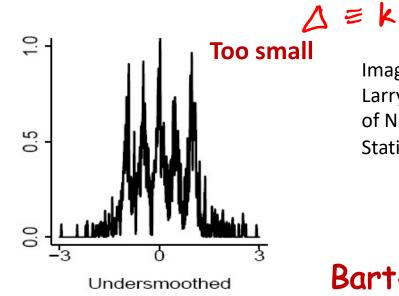


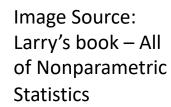
Infinite support

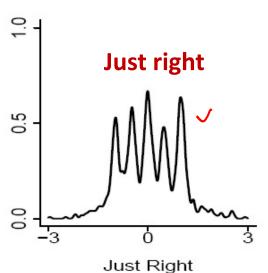
- need all points to compute estimate
- -But quite popular since smoother

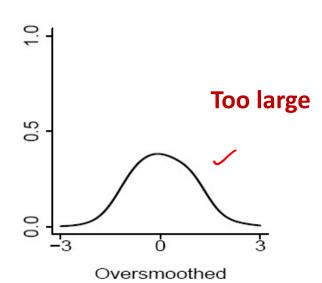
Choice of kernel bandwidth





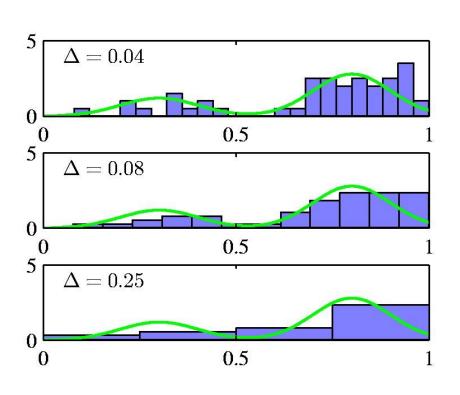


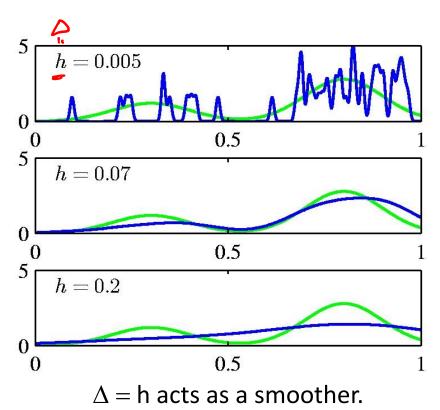




Bart-Simpson Density

Histograms vs. Kernel density estimation





Nonparametric density estimation

Histogram

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

Kernel density est

$$\widehat{p}(x) = \frac{n_x}{n\Delta}$$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

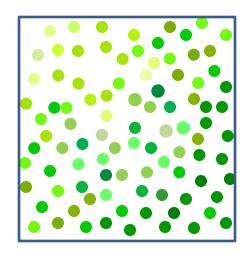
Fix $n_x = k$, estimate Δ from data (volume of ball around x that contains k training pts)

k-NN density est

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

Local Kernel Regression

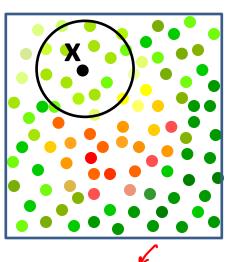
What is the temperature in the room?



$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Average

at location x?



$$\widehat{T}(x) = \frac{\sum_{i=1}^{n} Y_i \mathbf{1}_{||X_i - x|| \le h}}{\sum_{i=1}^{n} \mathbf{1}_{||X_i - x|| \le h}}$$

"Local" Average

Local Kernel Regression

- Nonparametric estimator
- Nadaraya-Watson Kernel Estimator

$$\widehat{f}_n(X) = \sum_{i=1}^n w_i Y_i \quad \text{Where} \quad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

- Weight each training point based on distance to test point
- Boxcar kernel yields local average

boxcar kernel :
$$K(x) = \frac{1}{2}I(x),$$

Choice of kernel bandwidth h

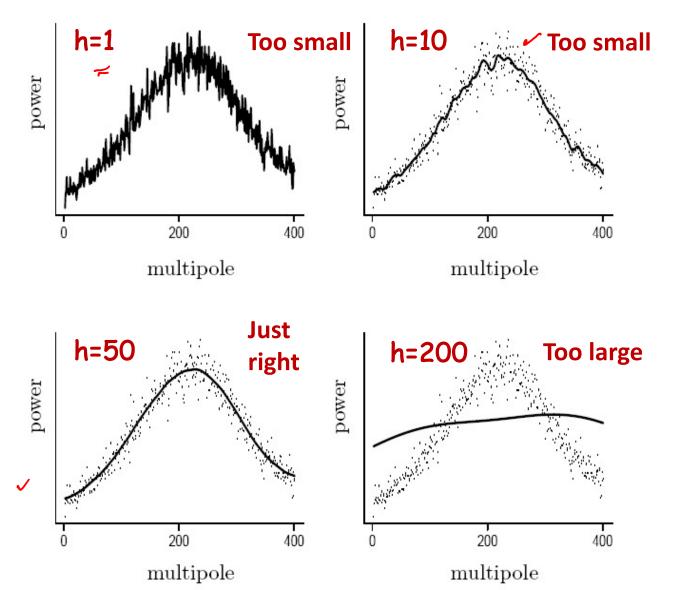


Image Source: Larry's book – All of Nonparametric Statistics

Kernel Regression as Weighted Least Squares

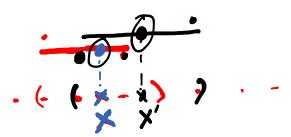
$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2$$

Weighted Least Squares

$$w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set
$$f(X_i) = \beta_X$$
 (a constant)



Kernel Regression as Weighted Least Squares

set $f(X_i) = \beta$ (a constant)

$$\min_{\beta} \sum_{i=1}^{n} w_i (\beta - Y_i)^2$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^{n} w_i (\beta - Y_i) = 0$$

$$\Rightarrow \widehat{f}_n(X) = \widehat{\beta} = \sum_{i=1}^n w_i Y_i$$

$$\sum_{i=1}^{n} W_{i}(X) = \frac{K\left(\frac{X - X_{i}}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_{i}}{h}\right)}$$

Notice that
$$\sum_{i=1}^n w_i = 1$$

Local Linear/Polynomial Regression

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

i.e. set
$$f(X_i) = \beta_0 + \beta_1(X_i - X) + \frac{\beta_2}{2!}(X_i - X)^2 + \dots + \frac{\beta_p}{p!}(X_i - X)^p$$

(local polynomial of degree p around X)

Summary

Non-parametric approaches

Four things make a nonparametric/memory/instance based/lazy learner:

- A distance metric, dist(x,X_i)
 Euclidean (and many more)
- 2. How many nearby neighbors/radius to look at? **k,** Δ **/h**
- 3. A weighting function (optional)W based on kernel K
- 4. How to fit with the local points?

 Average, Majority vote, Weighted average, Poly fit

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
 - Parametric models rely on very strong (simplistic) distributional assumptions
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
 - Parametric models, once fitted, are much more efficient in terms of storage and computation.