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Non-Parametric methods

• Typically don’t make any distributional assumptions
• As we have more data, we should be able to learn more 

complex models
• Let number of parameters scale with number of training data 

• Some nonparametric methods
Classification: Decision trees, k-NN (k-Nearest Neighbor) 
classifier
Density estimation: k-NN, Histogram, Kernel density 
estimate
Regression: Kernel regression

20



• Histogram – blocky estimate

• Kernel density estimate aka “Parzen/moving window 
method”

Kernel density estimate
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• more generally

Kernel density estimate
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Kernels
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Any kernel 
function that 
satisfies



Kernel density estimation
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Gaussian bumps (red) around six data points and their sum (blue) 

• Place small "bumps" at each data point, determined by the  
kernel function. 

• The estimator consists of a (normalized) "sum of bumps”.

• Note that where the points are denser the density estimate 
will have higher values.

Img src: Wikipedia



Choice of Kernels
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Finite support 
– only need local 

points to compute
estimate

Infinite support
- need all points to
compute estimate

-But quite popular 
since smoother 



Choice of kernel bandwidth
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Histograms vs. Kernel density 
estimation
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D = h acts as a smoother.



Nonparametric density estimation

• Histogram

• Kernel density est

Fix D, estimate number of points within D of x (ni or 
nx) from data

Fix nx= k, estimate D from data (volume of ball 
around x that contains k training pts)

• k-NN density est
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Local Kernel Regression
• What is the temperature 

in the room?
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Average “Local” Average

at location x?

x



Local Kernel Regression

• Nonparametric estimator
• Nadaraya-Watson Kernel Estimator

Where

• Weight each training point based on distance to test 
point

• Boxcar kernel yields
local average
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Choice of kernel bandwidth h
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Kernel Regression as Weighted Least 
Squares
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Weighted Least Squares

Kernel regression corresponds to locally constant estimator 
obtained from (locally) weighted least squares 

i.e. set    f(Xi) = b (a constant)



Kernel Regression as Weighted Least 
Squares
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constant

Notice that

set   f(Xi) = b (a constant)



Local Linear/Polynomial Regression
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Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial 
estimator obtained from (locally) weighted least squares 

i.e. set    

(local polynomial of degree p around X)



Summary

• Non-parametric approaches
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Four things make a nonparametric/memory/instance 
based/lazy learner:
1. A distance metric, dist(x,Xi)

Euclidean (and many more)  
2. How many nearby neighbors/radius to look at?

k, D/h
3. A weighting function (optional)

W based on kernel K
4. How to fit with the local points?

Average, Majority vote, Weighted average, Poly fit



Summary

• Parametric vs Nonparametric approaches
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Ø Nonparametric models place very mild assumptions on 
the data distribution and provide good models for 
complex data
Parametric models rely on very strong (simplistic) 
distributional assumptions

Ø Nonparametric models (not histograms) requires 
storing and computing with the entire data set. 
Parametric models, once fitted, are much more efficient 
in terms of storage and computation.




