Tips and Tricks for training deep NNs

- First hypothesis (underfitting): better optimize
- ➤ Increase the capacity of the neural network ✓
- ➤ Check initialization ✓
- > Check gradients (saturating units and vanishing gradients) <
- ➤ Tune learning rate ✓
- Second hypothesis (overfitting): use better regularization
- Dropout
 Data augmentation
 Early stopping
 Architecture search

 For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Other optimization tips and tricks

Momentum: use exponentially weighted sum of previous gradients

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get pass plateaus more quickly, by "gaining momentum"

- Finitialization: cannot initialize to same value, all units in a hidden layer will behave same; randomly initialize unif[-b,b]
- > Adaptive learning rates: one learning rate per parameter
- e.g. RMSProp uses exponentially weighted average of squared gradients

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^{2} \quad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

Adam combines RMSProp with momentum

Tips and tricks for preventing overfitting

- Dropout
- Data augmentation

➤ **Early stopping:** stop training when validation set error increases (with some look ahead).

Neural Architecture search: tune number layers and neurons per layer using grid search or clever optimization Classification:

p(YIX)

x -> Y

-> p(X)

-> p(X)

-> p(X)

Logistic regression

GRayes optimal classifich and policy policy

Granssian Bayes classifich

MIE, MAP

GRAYES optimal classifich

MIE, MAP

GRAYES

GRAYES

GRAYES

BOYES

GRAYES

Decision Trees

Aarti Singh

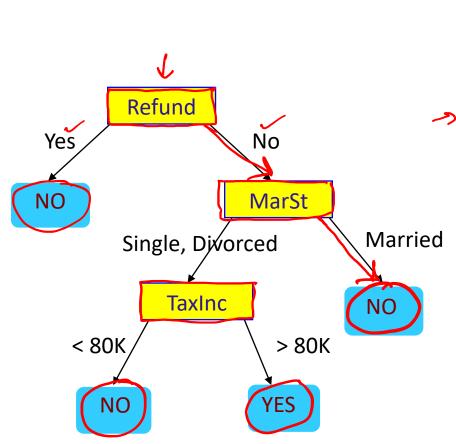
Machine Learning 10-315 Oct 6, 2021

Decision Trees

• Start with discrete features, then discuss continuous

Representation

What does a decision tree represent

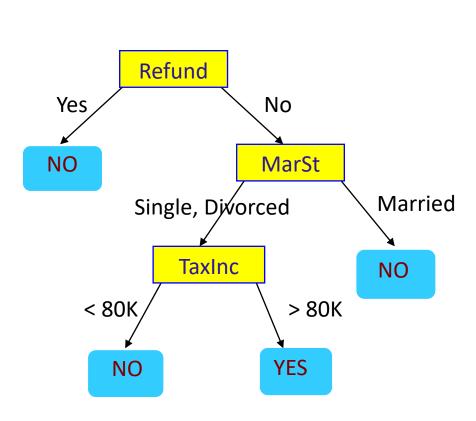


	X_1	X_2	X_3	Y
	Refund		Taxable Income	Cheat
)	No	Man	<8°K	No

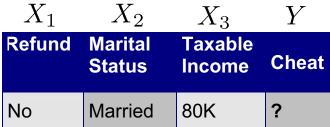
- Each internal node: test one feature X_i
- Each branch from a node: selects some value for X_i
- Each leaf node: prediction for Y

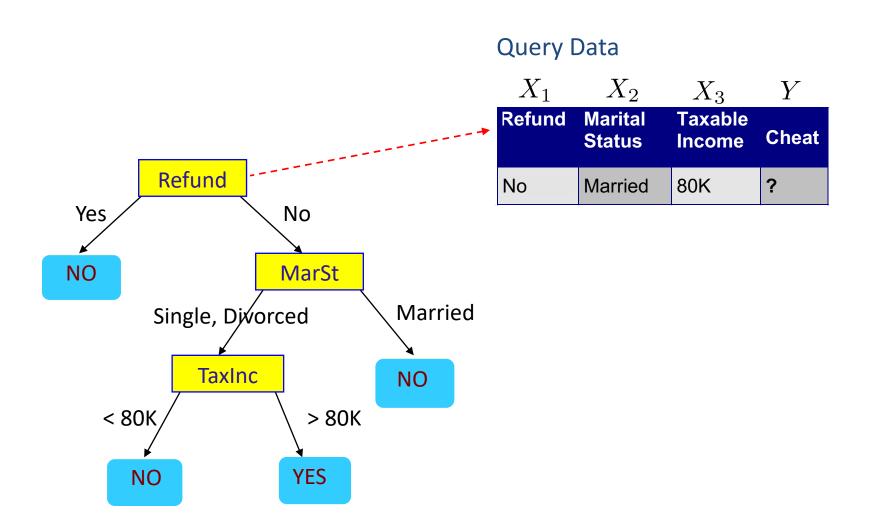
Prediction

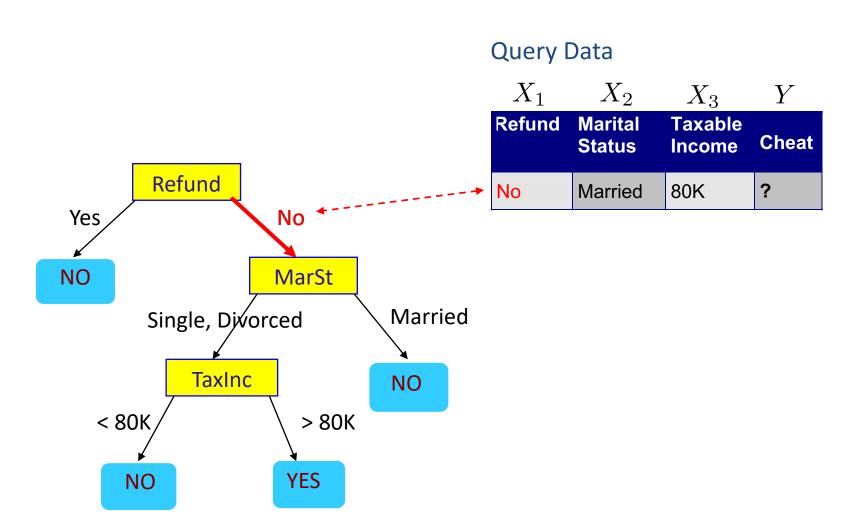
 Given a decision tree, how do we assign label to a test point

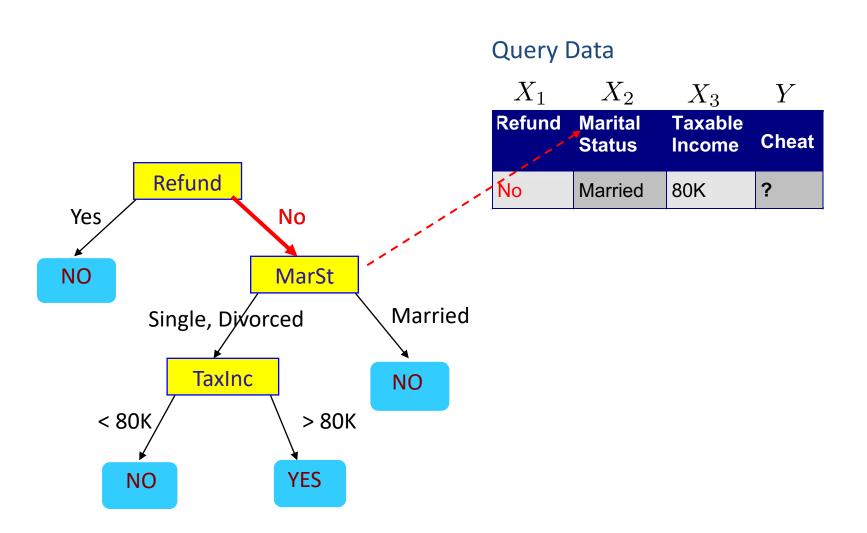


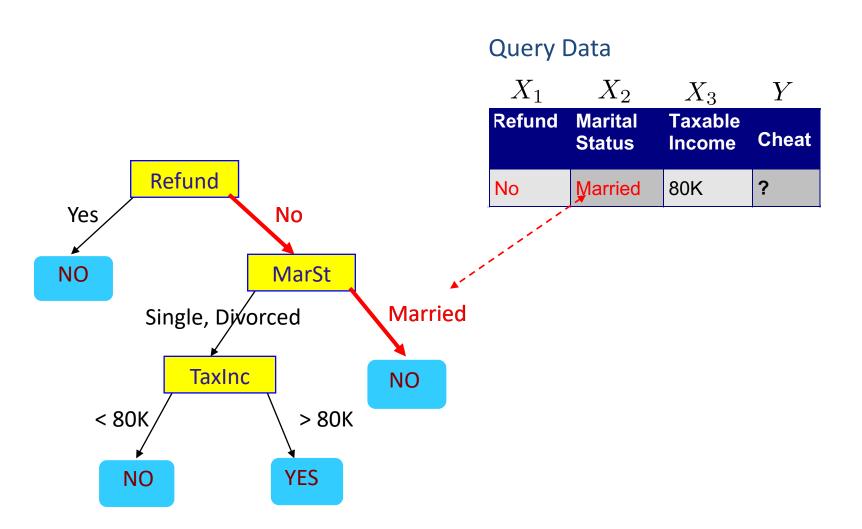
Query Data

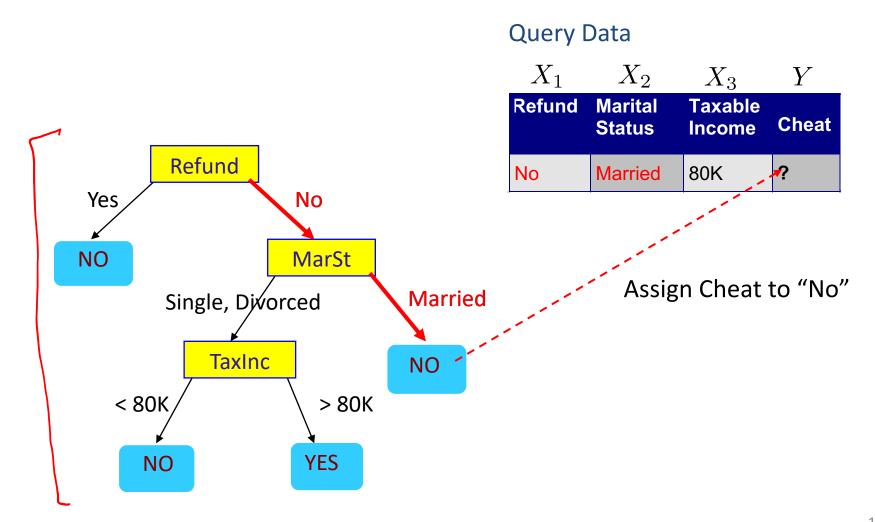












So far...

- What does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Discriminative or Generative?

Now ...

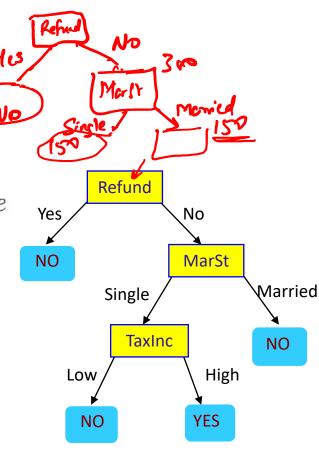
How do we learn a decision tree from training data

How to learn a decision tree

Top-down induction [ID3]

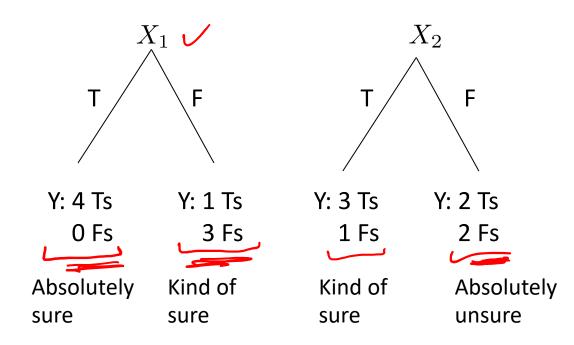
Main loop:

- 1. $X \leftarrow$ the "best" decision feature—for next node
- 2. Assign X as decision feature—for node
- 3. For each value of X, create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node



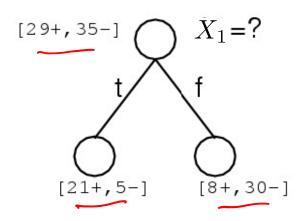
Which feature is best?

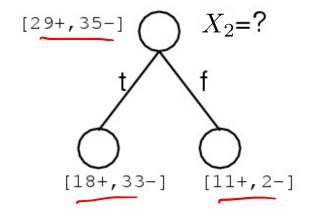
<u>X</u> ₁	X_2	Y
Т	Τ	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F



Good split if we are more certain about classification after split – Uniform distribution of labels is bad

Which feature is best?





Pick the attribute/feature which yields maximum information gain:

$$\arg\max_{i} I(Y, X_i) = \arg\max_{i} [H(Y) - H(Y|X_i)]$$

H(Y) – entropy of Y $H(Y|X_i)$ – conditional entropy of Y

Andrew Moore's Entropy in a Nutshell

Low Entropy

High Entropy

..the values (locations of soup) sampled entirely from within the soup bowl ..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

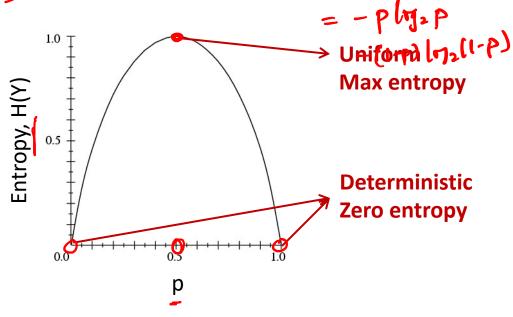
Entropy

Entropy of a random variable Y <- P

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$

More uncertainty, more entropy!

Y ~ Bernoulli(p)



Information Theory interpretation

Entropy: H(Y) = H(P) is the expected number of bits needed to encode a randomly drawn value of $Y \sim P$ under most efficient code optimized for distribution P

P = Science
$$00^{\circ}$$
 to 00° to 00° 000° 00° 00° 00° 00° 00° 00° 00°

Cross-Entropy: H(P,Q) is the expected number of bits needed to encode a randomly drawn value of Y under most efficient code optimized for distribution Q

Information Gain

- Advantage of attribute = decrease in uncertainty
 - Entropy of Y before split

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$

- Entropy of Y after splitting based on X_i
 - Weight by probability of following each branch

$$H(Y \mid X_i) = \sum_{x} P(X_i = x) H(Y \mid X_i = x)$$

$$= -\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$$

Information gain is difference

$$I(Y, X_i) = H(Y) - H(Y \mid X_i)$$

Max Information gain = min conditional entropy

Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

$$\arg\max_i I(Y,X_i) = \arg\max_i [H(Y) - H(Y|X_i)]$$

$$= \arg\min_i H(Y|X_i)$$
 Entropy of Y
$$H(Y) = -\sum_y P(Y=y) \log_2 P(Y=y)$$
 Conditional entropy of Y
$$H(Y|X_i) = \sum_x P(X_i=x) H(Y|X_i=x)$$

Feature which yields maximum reduction in entropy (uncertainty) provides maximum information about Y

Information Gain

$$H(Y \mid X_i) = -\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$$

X ₁	X ₂	Υ
T	Т	$\int T /$
T	F	T
Т	Τ	Т
T	F	
F	Τ	
F	T	F
F	Т	F
F	F	F

