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• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network 

➢ Check initialization 

➢ Check gradients (saturating units and vanishing gradients)

➢ Tune learning rate

• Second hypothesis (overfitting): use better regularization

➢ Dropout

➢ Data augmentation

➢ Early stopping

➢ Architecture search

• For many large-scale practical problems, you will need to use 
both: better optimization and better regularization!

Tips and Tricks for training deep NNs
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Other optimization tips and tricks

Ø Momentum: use exponentially weighted sum of previous 
gradients

can get pass plateaus more quickly, by ‘‘gaining momentum’’

Ø Initialization: cannot initialize to same value, all units in a 
hidden layer will behave same; randomly initialize unif[-b,b]

Ø Adaptive learning rates: one learning rate per parameter
e.g. RMSProp uses exponentially weighted average of squared gradients

Adam combines RMSProp with momentum
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Tips and tricks for preventing overfitting
Ø Dropout
Ø Data augmentation

Ø Early stopping: stop training when validation set error 
increases (with some look ahead).

Ø Neural Architecture search: tune number of layers and 
neurons per layer using grid search or clever optimization
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Decision Trees

• Start with discrete features, then discuss 
continuous

2



Representation

• What does a decision tree represent
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Decision Tree for Tax Fraud Detection

4

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

• Each internal node: test 
one feature Xi

• Each branch from a node: 
selects some value for Xi

• Each leaf node: 
prediction for Y

Refund Marital 
Status 

Taxable 
Income Cheat 

    
10 

 



Prediction

• Given a decision tree, how do we assign label to a 
test point
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Decision Tree for Tax Fraud Detection
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Decision Tree for Tax Fraud Detection
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So far…

• What does a decision tree represent
• Given a decision tree, how do we assign label 

to a test point

Discriminative or Generative?

Now …

• How do we learn a decision tree from training 
data
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How to learn a decision tree
• Top-down induction [ID3]
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Which feature is best?
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Which feature is best?
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Pick the attribute/feature which yields maximum information gain:

H(Y) – entropy of Y      H(Y|Xi) – conditional entropy of Y



Andrew Moore’s Entropy in a Nutshell
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Low Entropy High Entropy

..the values (locations of 
soup) unpredictable... almost 
uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 
entirely from within 
the soup bowl



Entropy
• Entropy of a random variable Y

More uncertainty, 
more entropy!

Y ~ Bernoulli(p)
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Entropy: H(Y) = H(P) is the expected number of bits needed  to 
encode a randomly drawn value of Y~P under most efficient 
code optimized for distribution P

Cross-Entropy: H(P,Q) is the expected number of bits needed  to 
encode a randomly drawn value of Y under most efficient 
code optimized for distribution Q
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Information Theory interpretation



Information Gain
• Advantage of attribute = decrease in uncertainty

– Entropy of Y before split

– Entropy of Y after splitting based on Xi

• Weight by probability of following each branch

• Information gain is difference

Max Information gain = min conditional entropy
19



Which feature is best to split?
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Pick the attribute/feature which yields maximum information gain:

Entropy of Y

Conditional entropy of Y

Feature which yields maximum reduction in entropy (uncertainty) 
provides maximum information about Y

= argmin
i

H(Y |Xi)



Information Gain
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