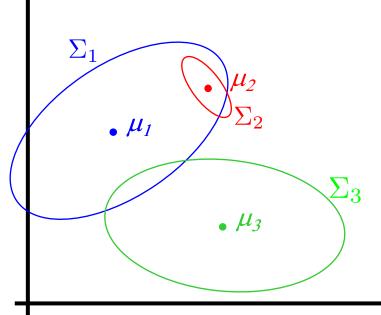
Expectation-Maximization (EM)

Aarti Singh

Machine Learning 10-315 Nov 17, 2021

Some slides courtesy of Eric Xing, Carlos Guestrin

Mixture models (Gaussian)



Gaussian mixture model

$$p(x|Y=i) \sim \mathcal{N}(\mu_i, \Sigma_i)$$

Parameters:
$$\{p_i, \mu_i, \Sigma_i\}_{i=1}^K$$

How to estimate parameters? Max Likelihood
 But don't know labels Y (recall Gaussian Bayes classifier)

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden labels)

- No need to choose step size as in Gradient methods.
- EM is an Iterative algorithm with two linked steps:

```
E-step: fill-in hidden data (Y) using inference M-step: apply standard MLE/MAP method to estimate parameters \{p_i,\,\mu_i,\,\Sigma_i\}_{i=1}^k
```

 This procedure monotonically improves the marginal likelihood of observed data (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

EM for spherical, same variance GMMs same mixture proportions

Initialize: $\mu_1, \mu_2, ..., \mu_K$ randomly

E-step

Compute "expected" classes of all datapoints for each class

$$P(y=i|x_{j},\mu_{1}...\mu_{k}) \propto exp\left(-\frac{1}{2\sigma^{2}}||x_{j}-\mu_{i}||^{2}\right)P(y=i)$$
In K-means "E-step" we do hard assignment

In K-means "E-step"

EM does soft assignment

M-step

Compute Max. like μ given our data's class membership distributions (weights)

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

Exactly same as MLE with weighted data

Iterate.

EM for general GMMs

Iterate. On iteration t let our estimates be

$$\lambda_t = \{\, \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \, ... \, \mu_k{}^{(t)}, \, \varSigma_1{}^{(t)}, \, \varSigma_2{}^{(t)} \, ... \, \varSigma_k{}^{(t)}, \, p_1{}^{(t)}, \, p_2{}^{(t)} \, ... \, p_k{}^{(t)} \, \}$$

 $p_i^{(t)}$ is shorthand for estimate of P(y=i) on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

$$P(y = i | x_j, \lambda_t) \propto p_i^{(t)} p(x_j | \mu_i^{(t)}, \Sigma_i^{(t)})$$

Just evaluate a Gaussian at x_i

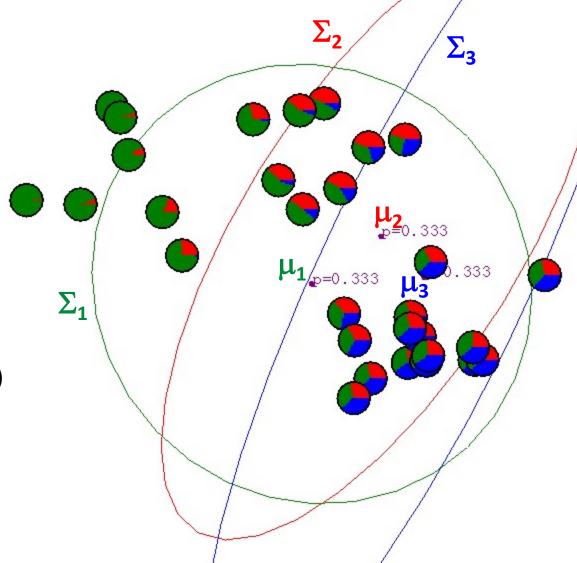
M-step

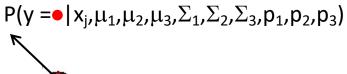
Compute MLEs given our data's class membership distributions (weights)

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \sum_{i} \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) (x_{j} - \mu_{i}^{(t+1)}) (x_{j} - \mu_{i}^{(t+1)})^{T}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})}$$

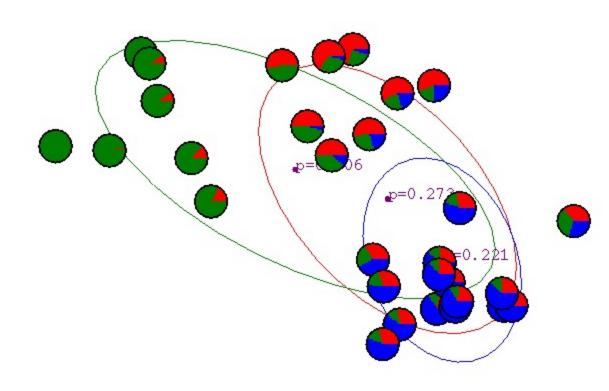
$$p_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{m} \qquad m = \#data points$$

EM for general GMMs: Example

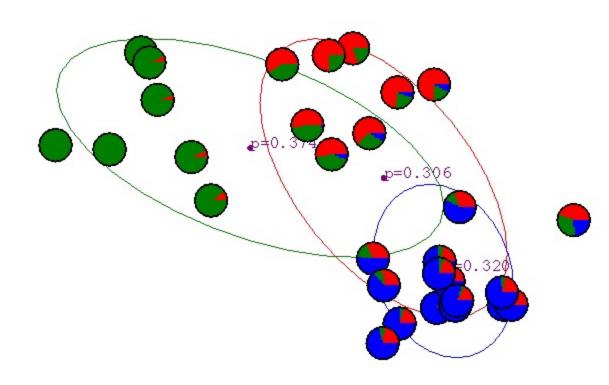




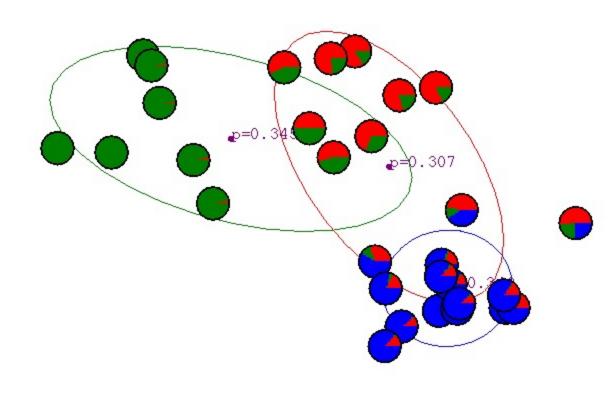
After 1st iteration



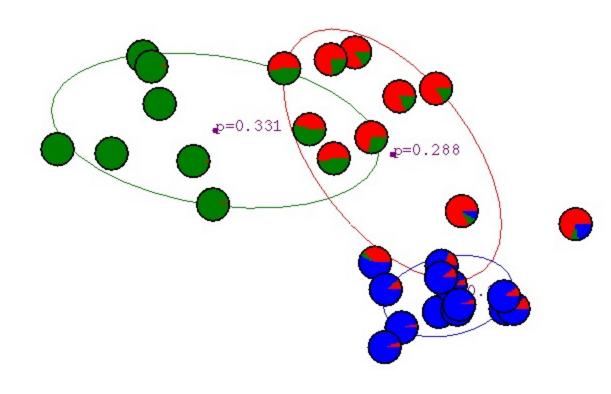
After 2nd iteration



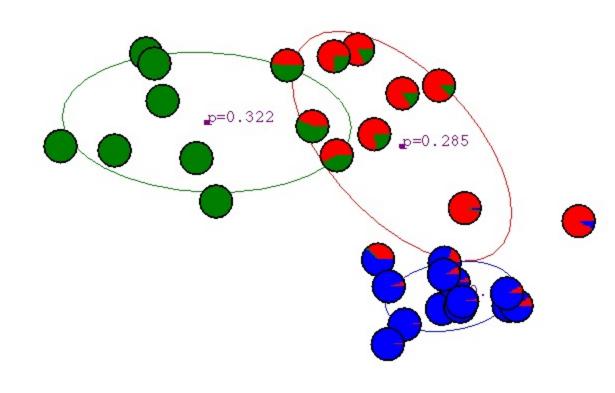
After 3rd iteration



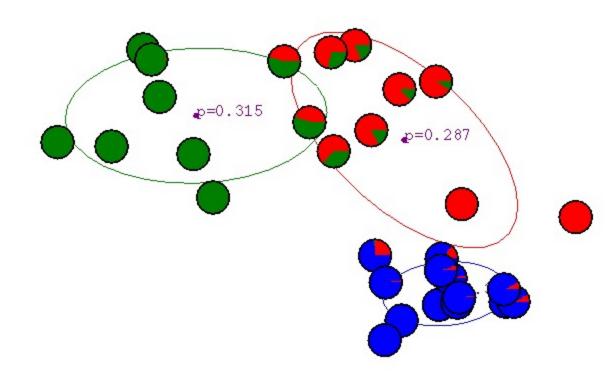
After 4th iteration



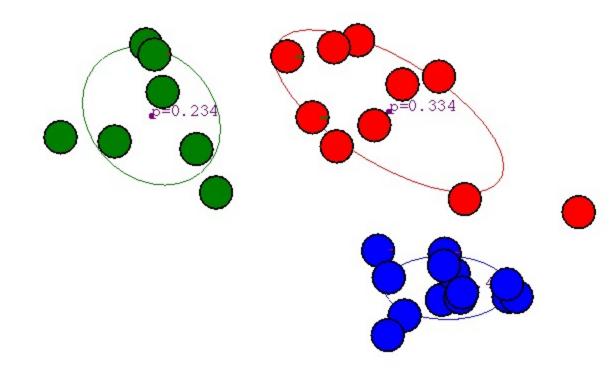
After 5th iteration



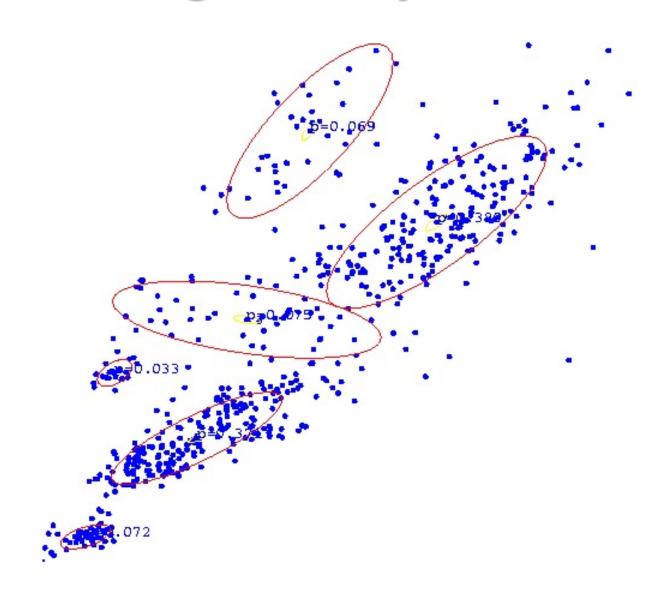
After 6th iteration



After 20th iteration



GMM clustering of assay data



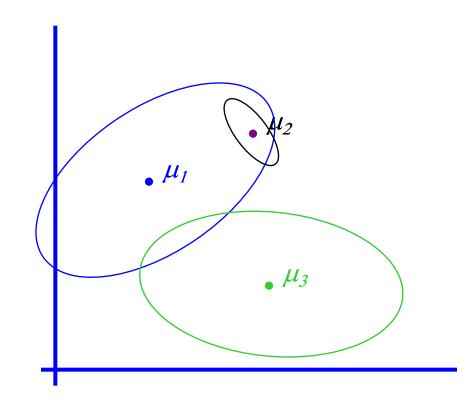
General GMM

GMM - Gaussian Mixture Model (Multi-modal distribution)

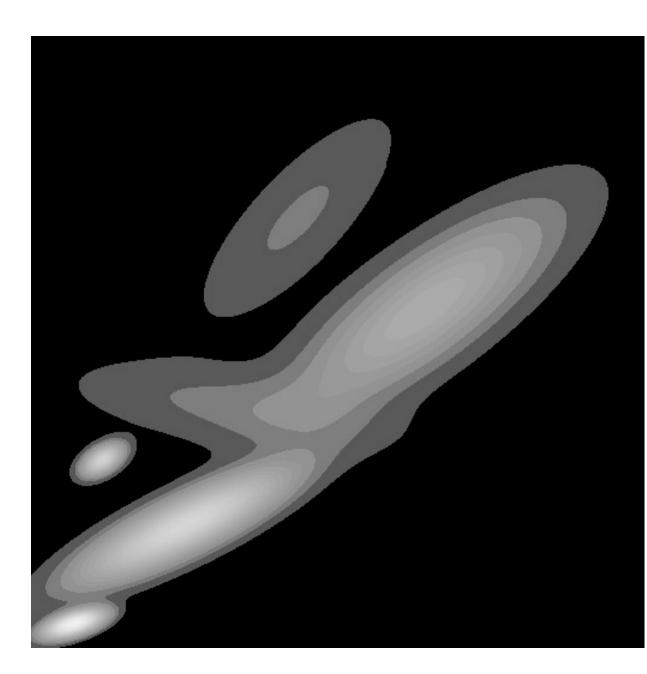
$$p(x) = \sum_{i} p(x/y=i) P(y=i)$$

$$\downarrow \qquad \qquad \downarrow$$
Mixture
$$component \qquad proportion$$

$$p(x|y=i) \sim N(\mu_i, \Sigma_i)$$

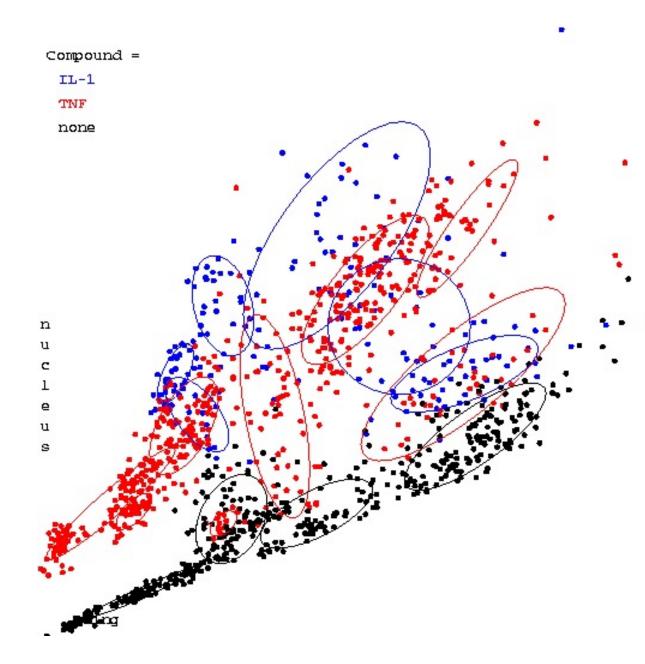


Resulting Density Estimator

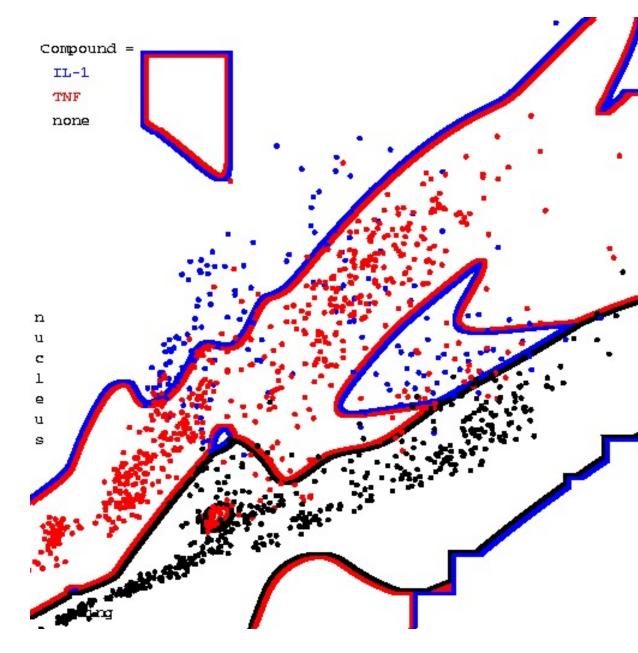


Three classes of assay

(each learned with it's own mixture model)



Resulting Bayes Classifier

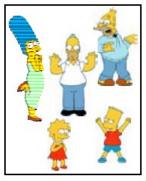


Summary: EM Algorithm

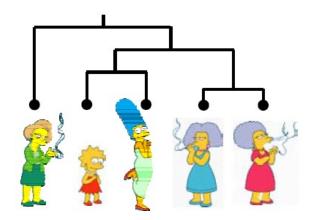
- A way of maximizing likelihood function for hidden variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - 1. E-step: soft cluster assignment for each data point
 - 2. M-step: update parameters of each mixture component
- EM can get stuck in local minima.
- BUT very popular in practice.

Clustering Algorithms

- Partition algorithms
 - K means clustering
 - Mixture-Model based clustering



- Hierarchical algorithms
 - Single-linkage
 - Average-linkage
 - Complete-linkage
 - Centroid-based



Hierarchical Clustering

Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

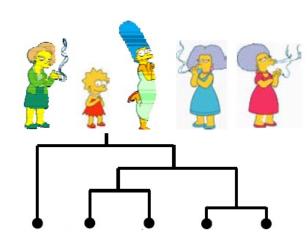
Greedy - less accurate but simple to implement

Top-Down divisive

Starts with all the data in a single cluster, and repeat:

Split each cluster into two using a partition algorithm
 Until each object is a separate cluster.

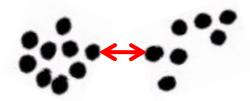
More accurate but complex to implement



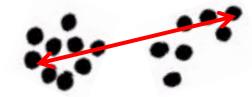
Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

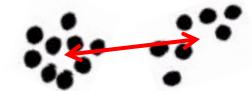
- Single-Linkage
 - Nearest Neighbor: similarity between their closest members.



- Complete-Linkage
 - Furthest Neighbor: similarity between their furthest members.



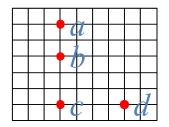
- Centroid
 - Similarity between the centers of gravity



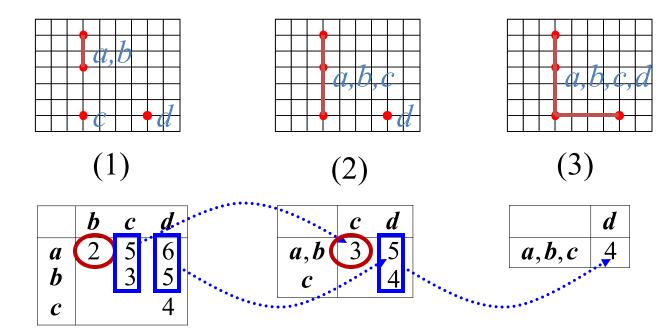
- Average-Linkage
 - Average similarity of all cross-cluster pairs.

Single-Linkage Method

Euclidean Distance



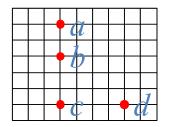
	b	c	d
a	2	5	6
\boldsymbol{b}		3	5
c			4

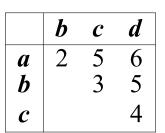


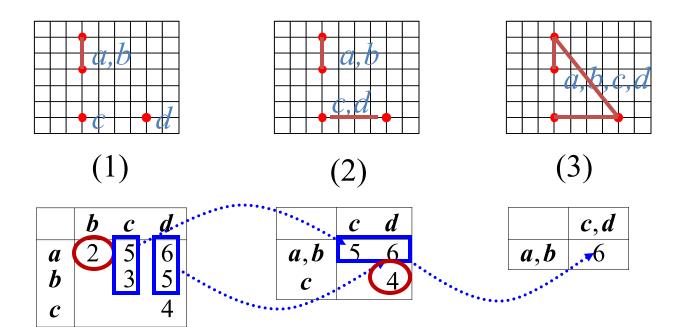
Distance Matrix

Complete-Linkage Method

Euclidean Distance

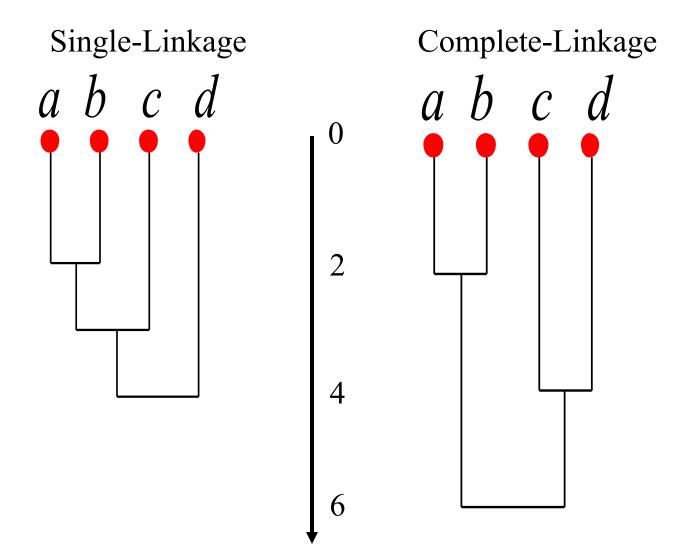




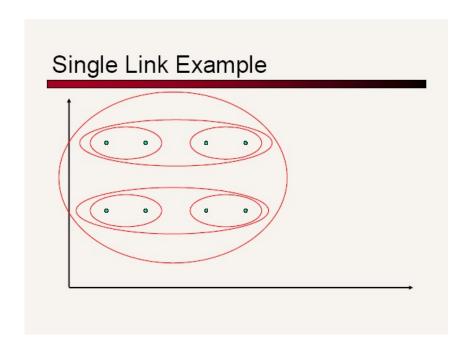


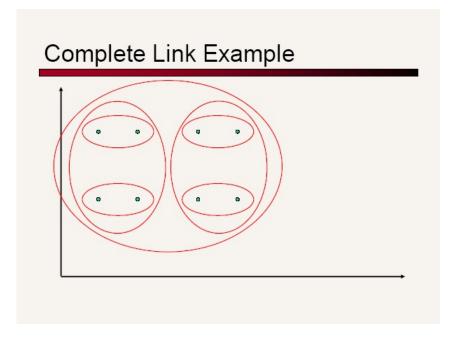
Distance Matrix

Dendrograms



Another Example





Single vs. Complete Linkage

Shape of clusters

Single-linkage

allows anisotropic and

non-convex shapes

Complete-linkage

assumes isotopic, convex

shapes

Computational Complexity

- All hierarchical clustering methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.
- At each iteration,
 - Sort similarities to find largest one O(n²log n).
 - Update similarity between merged cluster and other clusters.
 Computing similarity to each other cluster can be done in constant time.
- So we get O(n² log n) or O(n³) (if naïvely implemented)

Computational Complexity (K-means)

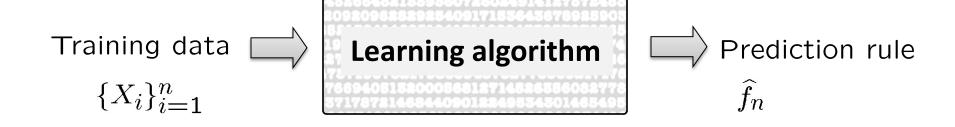
- At each iteration,
 - Computing distance between each of the n objects and the K cluster centers is O(Kn).
 - Computing cluster centers: Each object gets added once to some cluster: O(n).
- Assume these two steps are each done once for l iterations:
 O(lKn).

What you need to know...

- Partition based clustering algorithms
 - K-means
 - Coordinate descent
 - Seeding
 - Choosing K
 - Mixture modelsEM algorithm
- Hierarchical clustering algorithms
 - Single-linkage
 - Complete-linkage
 - Centroid-linkage
 - Average-linkage

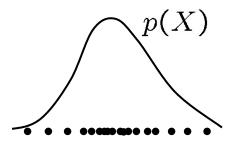
Unsupervised Learning

"Learning from unlabeled/unannotated data" (without supervision)



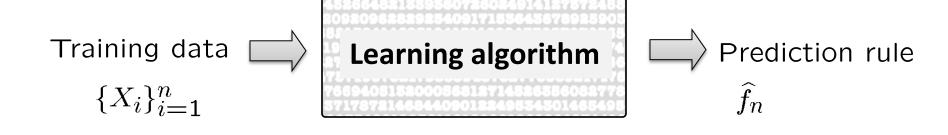
What can we predict from unlabeled data?

Density estimation



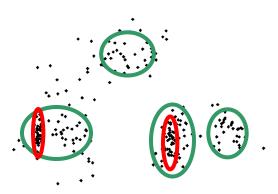
Unsupervised Learning

"Learning from unlabeled/unannotated data" (without supervision)



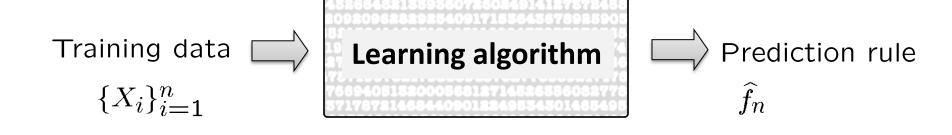
What can we predict from unlabeled data?

- Density estimation
- Groups or clusters in the data



Unsupervised Learning

"Learning from unlabeled/unannotated data" (without supervision)



What can we predict from unlabeled data?

- Density estimation
- Groups or clusters in the data
- Dimensionality reduction

