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Decision Trees

• Start with discrete features, then discuss 
continuous
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Representation

• What does a decision tree represent
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Decision Tree for Tax Fraud Detection
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Prediction

• Given a decision tree, how do we assign label to a 
test point

5



Decision Tree for Tax Fraud Detection

6

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Query Data



Decision Tree for Tax Fraud Detection

7

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Query Data



Decision Tree for Tax Fraud Detection

8

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Query Data

No

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 



Decision Tree for Tax Fraud Detection

9

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Query Data

No

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 



Decision Tree for Tax Fraud Detection

10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Query Data

No

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Married 

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 



Decision Tree for Tax Fraud Detection

11

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Query Data

No

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Married 

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Assign Cheat to “No”



So far…

• What does a decision tree represent
• Given a decision tree, how do we assign label 

to a test point

Discriminative or Generative?

Now …

• How do we learn a decision tree from training 
data
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How to learn a decision tree
• Top-down induction [ID3]
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Which feature is best?
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Which feature is best?
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Pick the attribute/feature which yields maximum information gain:

H(Y) – entropy of Y      H(Y|Xi) – conditional entropy of Y



Andrew Moore’s Entropy in a Nutshell
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Low Entropy High Entropy

..the values (locations of 
soup) unpredictable... almost 
uniformly sampled 
throughout our dining room

..the values (locations 
of soup) sampled 
entirely from within 
the soup bowl



Entropy
• Entropy of a random variable Y

More uncertainty, 
more entropy!

Y ~ Bernoulli(p)
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Entropy: H(Y) = H(P) is the expected number of bits needed  to 
encode a randomly drawn value of Y~P under most efficient 
code optimized for distribution P

Cross-Entropy: H(P,Q) is the expected number of bits needed  to 
encode a randomly drawn value of Y under most efficient 
code optimized for distribution Q
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Information Theory interpretation



Information Gain
• Advantage of attribute = decrease in uncertainty

– Entropy of Y before split

– Entropy of Y after splitting based on Xi

• Weight by probability of following each branch

• Information gain is difference

Max Information gain = min conditional entropy
19



Which feature is best to split?
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Pick the attribute/feature which yields maximum information gain:

Entropy of Y

Conditional entropy of Y

Feature which yields maximum reduction in entropy (uncertainty) 
provides maximum information about Y

= argmin
i

H(Y |Xi)



Information Gain
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How to learn a decision tree
• Top-down induction [ID3]
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How to learn a decision tree
• Top-down induction [ID3, C4.5, C5, …]
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C4.5

feature
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Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

What threshold to pick?

Search for best one as per information gain. Infinitely many??

Don’t need to search over more than ~ n (number of training 
data),e.g. say X1 takes values x1

(1), x1
(2), … , x1

(n) in the training set. 
Then possible thresholds are

[x1
(1) + x1

(2)]/2, [x1
(2) + x1

(3)]/2, … , [x1
(n-1) + x1

(n)]/2 
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Dyadic decision trees 
(split on mid-points of features)
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Decision Tree more generally…

26

1 1

1
0

1
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• Features can be discrete,
continuous or categorical

• Each internal node: test 
some set of features {Xi}

• Each branch from a node:
selects a set of value for 
{Xi}

• Each leaf node: 
prediction for Y

1
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Expressiveness of Decision Trees
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• Decision trees in general (without pruning) can express any 
function of the input features.

• E.g., for Boolean functions, truth table row → path to leaf:

• There is a decision tree which perfectly classifies a training set 
with one path to leaf for each example - overfitting

• But it won't generalize well to new examples - prefer to find 
more compact decision trees



When to Stop?

• Many strategies for picking simpler trees:
– Pre-pruning

• Fixed depth (e.g. ID3)
• Fixed number of leaves

– Post-pruning
• Chi-square test

– Convert decision tree to a set of rules
– Eliminate variable values in rules which are independent of 

label (using chi-square test for independence)
– Simplify rule set by eliminating unnecessary rules

– Information Criteria: MDL(Minimum Description Length)
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• Penalize complex models by introducing cost
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log likelihood cost

regression
classification

penalize trees with more leaves

Information Criteria

CART – optimization can be solved by dynamic programming
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Example of 2-feature decision tree 
classifier

cs.uchicago.edu



How to assign label to each leaf

Classification – Majority vote Regression – ? 
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How to assign label to each leaf

Classification – Majority vote Regression – Constant/ 
Linear/Poly fit
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Regression trees
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Average (fit a constant ) using 
training data at the leaves

Num Children?

≥ 2 < 2



What you should know
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• Decision trees are one of the most popular data mining tools
• Simplicity of design
• Interpretability
• Ease of implementation
• Good performance in practice (for small dimensions)

• Information gain to select attributes (ID3, C4.5,…)
• Decision trees will overfit!!!

– Must use tricks to find “simple trees”, e.g.,
• Pre-Pruning: Fixed depth/Fixed number of leaves
• Post-Pruning: Chi-square test of independence
• Complexity Penalized/MDL model selection

• Can be used for classification, regression and density 
estimation too


