Boosting

Can we make dumb learners smart?

Aarti Singh

Machine Learning 10-315
Nov 3, 2021

Slides Courtesy: Carlos Guestrin, Freund & Schapire

ACHI

Why boost weak learners?

Goal: Automatically categorize type of call requested

(Collect, Calling card, Person-to-person, etc.)

yes I’'d like to place a collect call long
distance please (Collect)

operator I need to make a call but I need to
bill it to my office (ThirdNumber)

yes I'd like to place a call on my master card
please (CallingCard)

Easy to find “rules of thumb” that are “often” correct.

E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

Hard to find single highly accurate prediction rule.

Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners e.g., naive Bayes, logistic
regression, decision stumps (or shallow decision trees)

Are good © - don’t usually overfit
Are bad ® - can’t solve hard learning problems

 Can we make weak learners good??? 3

Voting (Ensemble Methods)

* Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

* Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

H: X = Y (-1,1)

h1(X) S h2(X)
- = h1(X)+h2(X)

H(X) = S|gn(Zat ht(X))

Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

But how do you ???
— force classifiers h, to learn about different parts of the input
space?
— weigh the votes of different classifiers? o,

Boosting [Schapire’89]

Idea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

On each iteration t:

— weight D,(i) for each training example i, based on how
incorrectly it was classified

— Learn a weak hypothesis — h,
— A weight for this hypothesis —

Final classifier: | H(X) = sign(Z ot ht(X))

Practically useful
Theoretically interesting

Learning from weighted data

* Consider a weighted dataset
— D(i) — weight of i th training example (x\y')
— Interpretations:

 jth training example counts as D(i) examples

* If | were to “resample” data, | would get more samples of “heavier”
data points

* Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

— e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)
Count(Y=y) = 5 1(Y '=y) Count(Y=y) = 5 D(i)1(Y i=y)
i =1 i =1

7

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

Train weak learner using distribution D;. Naive bayes, decision stump
Get weak classifier hy : X — R.
Update:

Dyyq(i) = Dy (1) { e if y; = hy(x;)

et if y; & hi(x;)

: Increase weight
_ Di(i) exp(—anyibu(s) 0o T

Zt yiht(xi)=-1<0

where Z; is a normalization factor

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

Train weak learner using distribution D;. Naive bayes, decision stump

Get weak classifier hy : X — R.
Update:

Dy(7) exp(—ay;hi(z;))

Diyq(i) = Z

where Z; is a normalization factor

Zo= 3" Ds(i) exp(—asyshe()
1=1

Increase weight
if wrong on pt i
yiht(xi) =-1<0

Weights for all

pts must sumto 1
z Dt+1(i) =1
t

AdaBoost [Freund & Schapire’95]

Given: (21,91),---, (Tm,Ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (z) = 1/m. Initially equal weights
Fort = 1; «ua5.1I:

e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier hy : X — R.
e Choose a; € R. Magic (+ve)
e Update: . Increase weight
Diis (Z) - Dt(z) exp(_atyz'ht(xi)) if wrong on pti
Z yi ht(xi) =-1< 0

where Z; is a normalization factor

Output the final classifier:

g
H(z) = sign (Z atht(a:)) :

=1

What «, to choose for hypothesis A,?

Weight Update Rule: Dyy1(3) = Dy(7) exp(gatyiht(xi))
t

o = %]n (1 _ et) [Freund & Schapire’95]

Weighted training error
et = Pyup,iy[he(x") # '] = Z Di()6(he(@i) # yi)

Does ht get it" point wrong

= 0 if h, perfectly classifies all weighted data pts o =
g = 1if hy perfectly wrong => -h, perfectly right oy = -
=0.5 o = 0

Boosting Example (Decision Stumps)

[)2

12

Boosting Example (Decision Stumps)

[)2

Boosting Example (Decision Stumps)

=

H_
final

= \1gn<4|

14

Analysis for Boosting

* Choice of &, and hypothesis /4, obtained by coordinate descent on exp
loss (convex upper bound on 0/1 loss)

0/1 loss

exp loss

fl@) =) athe(a); H(z) = sign(f())
t

> 6(H() £) < Y exp(—yif (2)
=1

1
m,—1

0/1 loss exp loss

15

Analysis for Boosting

Analysis reveals:

* If each weak learner A, is slightly better than random guessing (g,< 0.5),

then training error of AdaBoost decays exponentially fast in number of
rounds T.

m

T
> 8(H(m;) #y;) < exp (—2 > (12— Et)2>
=1

1
m;=1

Training Error

What about test error?

16

Boosting results — Digit recognition

[Schapire, 1989]

Test Error

Training Error |
10 100 1000
rounds

Boosting often,
— Robust to overfitting
— Test set error decreases even after training error is zero

If margin between classes is large, subsequent weak learners agree and hence
more rounds does not necessarily imply that final classifier is getting more
complex. 17

AdaBoost and AdaBoost.MH on Train (left) and Test (r1ght) data from Irvine repository. [Schapire and Singer, ML 1999]

18y, g Train

145 |
12- %
10 3 |
8- %l

oM = o

| 10 100

30

g8/

20

1000

20
| e 1€st
\
\ 2 15
YA
il
) 10
‘1
[
|
- W 5-
w, Y\
\ ”,'."':s:‘:‘ M”_N.)
10 100 1000
25
hepatits =
,,w/ 18-
A A w i AN 10 -
\ A A ,
\ 3l -lwf' e nj‘m B
\ L &
0-
10 100 1000 |
cleve 16 =
14 - °
12
9\'/ 10
i «0 .,\)A’/ :
} ,
[';N‘,/ 2
] -l 4 -
k '," ~ ‘A'M 2 .
';V,I'“ 0 b
10 100 IO('.!"J: .l

= o Train

10 100

sonal

10 100

nnsphere

10 100

0 ‘ pre TeSt
'f‘:_
H
I‘ '.“
15- \iy
| 7 v,
10 - yi ¥ M"W
1000 | 10 100 1000
N o sonar
28 3 2)" \
%
24 -
2
2 W
L Rkl L
1000 | 10 100 1000
18 -)
onosphare
16 -
14 - Il'k ;'\‘
!
12 -
10 M\H‘
A
8 .
" '.ff-“w“wum‘
1000 | 10 100 1000

Boosting can overfit if margin between classes is too small (high label noise)
or weak learners are too complex.

18

Boosting and Logistic Regression

Logistic regression:

Minimize log loss

S In(1 + exp(—yif(z))

i=1
Define

f(x) = Z W;T
J

where x; predefined
features

(linear classifier)

Jointly optimize over all
weights wo, wi, wa...

Boosting:
* Minimize exp loss

> exp(—yif(x;))
i=1
e Define

f(z) =) athi(z)
t

where /,(x) defined dynamically

to fit data
(not a linear classifier)

* Weights o, learned per iteration

t incrementally
19

Boosting Summary

Combine weak classifiers to obtain strong classifier
— Weak classifier — slightly better than random on training data

— Resulting very strong classifier — can eventually provide zero training
error

AdaBoost algorithm
Boosting v. Logistic Regression

— Similar loss functions

— Single optimization (LR) v. Incrementally improving classification (B)
Most popular application of Boosting:

— Boosted decision stumps!

— Very simple to implement, very effective classifier

20

