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In-person Expectations

• Please do not come to class if you feel sick or have symptoms 
of a potentially contagious illness. 

• This holds even if you know you do not have COVID-19 but 
have symptoms that may be a sign of other contagious 
illnesses, such as a cold or flu.

• Coming to class when sick is NOT a sign of hard work. Be 
responsible, care for your classmates and campus community.
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Announcements

• Canvas fixed

• Late days – total 4, no more than 1 for a QnA, no more than 2 
for a HW

• Tentative HW due dates have been posted

• QnA1 out today 
– due in 1 week, Sept 8 11:59 pm ET

• Office hours

3

Day Time Location Staff
Mondays 1:30 pm TBA Christina
Tuesdays 3:30 pm TBA Spoorthi

Wednesdays 2:30 pm TBA Haitian

Thursdays 10:30 am Zoom (link 
on Canvas) Aarti

https://canvas.cmu.edu/courses/25787/external_tools/8366


Notion of “Features aka Attributes”

How to represent inputs mathematically?
• Document vector X 

– list of words (different length for each document)
– frequency of words (length of each document = size of 

vocabulary), also known as Bag-of-words approach
Misses out context!!

– list of n-grams (n-tuples of words)
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Input

Document/Article
remember to wake up when class ends

=
wake ends to class remember up when

Ø Ideas?

Ø Why might 
this be 
limited?



How to represent inputs mathematically?
• Image X = intensity/value at each pixel, fourier transform 

values, SIFT etc. 
• Market information X = daily/monthly? price of share for past 

10 years

Notion of “Features aka Attributes”
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Input

Images Market information 

Input



Distribution of Inputs

Discrete Probability Distribution P(X) = P(X=x)
e.g. P(head) = ½, P(word x in text) = px

Probabilities in a distribution sum to 1 
∑xP(X=x) = 1 P(tail) = 1 – p(head), ∑x px =1

Continuous Probability density p(x)       P(a<=X<=b) =∫!
" 𝑝 𝑥 𝑑𝑥

e.g. p(brain activity) 

Probability density integrate to 1
∫𝑝 𝑥 𝑑𝑥 = 1
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Distributions in Supervised tasks

• Distribution learning also arises in supervised learning tasks 
e.g. classification

P(Y= y) Distribution of class labels
P(X = x |Y = y) Distribution of words in ‘news’ documents

Distribution of brain activity under ‘stress’

P(Y = y|X = x)   Distribution of topics given document 7

Input

Olaf simons’10



Classification

High Stress
Moderate Stress
Low Stress

Input feature vector, X Label, Y

Goal:

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case: 
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X)

Model X and Y as random variables with joint distribution PXY

Training data {Xi, Yi}ni=1 ~ iid (independent and identically distributed) 
samples from PXY

Test data {X,Y} ~ iid sample from PXY

Training and test data are independent draws from same distribution

Test 
subject



Bayes Classifier
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Model X and Y as random variables

For a given X, f(X) = label Y which is more likely

f(X) = 

0

0.5

1

X

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject



Optimality of Bayes Classifier
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Bayes Rule

Bayes Rule:

12Thomas Bayes

To see this, recall:

P(X,Y) = P(X|Y) P(Y)

P(Y,X) = P(Y|X) P(X)



Bayes Classifier – equivalent form

Bayes Rule:

Bayes classifier:
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Class conditional 
Distribution of features

Distribution of class

f(X) = 



Bayes Classifier
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Class conditional 
Distribution of features

Class distribution

We can now consider appropriate distribution models for the two terms:

Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

f(X) = 



Modeling class distribution
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= q = 1 - q

Modeling Class distribution P(Y=y)

Like a coin flip

No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

= Bernoulli(q)



Modeling Class distribution P(Y)

Like a dice roll

Modeling class distribution
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= pH

Low Stress

High Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

Moderate Stress

= pM = pL

pH + pM + pL = 1

Ø How do we model multiple (>2) classes?
= Multinomial(pH,pM,pL)



Modeling class conditional distribution of feature P(X=x|Y=y)

Modeling class conditional 
distribution of features
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No Stress

Stress

X, average brain activity in “Amygdala”

low high

f(X) Test 
subject

E.g. P(X=x|Y=y) = Gaussian N(μy,σ2
y)

σ2
y

μy

Ø What distribution would you use?



1-dim Gaussian distribution
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µ=0 µ=0

s2
s2

X is Gaussian N(μ,σ2)

P (X = x|µ,�) = 1p
2⇡�2



Why Gaussian?

• Properties
– Fully Specified by first and second order statistics
• Uncorrelated ó Independence

– X, Y Gaussian => aX+bY Gaussian

– Central limit theorem: if X1, …, Xn are any iid random 
variables with mean µ and variance s2 < ∞
then

𝑛(!
"
∑#$!" 𝑋# − 𝜇 )~ 𝑁(0,s2)
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1-dim Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, s2y)

Learn parameters θ, μy, 
sy from data 

Class conditional 
Distribution of features

Class distribution

f(X) = 



1-dim Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, σ2
y)

Class conditional 
Distribution of features

Class distribution

f(X) = 

Ø What decision 
boundaries can we 
get in 1-dim?
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d-dimensional inputs
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High Stress
Moderate Stress
Low Stress

Input feature vector, X Label, Y

Modeling class conditional distribution of feature P(X=x|Y=y)

E.g. P(X=x|Y=y) = Gaussian N(μy,Sy)

Ø What distribution would you use?



d-dim Gaussian distribution
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X is Gaussian N(μ, Σ) μ is d-dim vector, Σ is dxd dim matrix

μ

Σ

μ

Σ = σ2I

P (X = x|µ,⌃) = 1p
(2⇡)d|⌃|

d=2
X = [X1; X2]

X1

X2

X1

X2



µ1

µ2

d-dim Gaussian Bayes classifier
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Bernoulli(θ)Gaussian(μy, Sy)

Learn parameters θ, μy, 
Σy from data 

Class conditional 
Distribution of features

Class distribution

f(X) = 



d-dim Gaussian Bayes classifier
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Bernoulli(θ)

Decision Boundary

µ1

µ1

µ2

µ2

Gaussian(μy,Σy)

Class conditional 
Distribution of features

Class distribution

f(X) = 

Ø What decision 
boundaries can we 
get in d-dim?
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• Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

Decision Boundary of Gaussian Bayes

P (Y = 1|X = x)

P (Y = 0|X = x)
=

P (X = x|Y = 1)P (Y = 1)

P (X = x|Y = 0)P (Y = 0)

=

s
|⌃0|
|⌃1|

exp

✓
��(x� µ1)⌃

�1
1 (x� µ1)0

2
+

(x� µ0)⌃
�1
0 (x� µ0)0

2

◆
✓

1� ✓

In general, this implies a quadratic equation in x. But if Σ1= Σ0, then 
quadratic part cancels out and decision boundary is linear.

1 = 

TT



Recap
• Bayes classifier – assumes PXY known, optimal for 0/1 loss

• Gaussian Bayes classifier – assumes
Class distribution is Bernoulli/Multinomial
Class conditional distribution of features is Gaussian

• Decision boundary – (binary classification)
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Class conditional 
Distribution of features

Class distribution

f(X) = 



Glossary of Machine Learning

• Feature/Attribute
• iid
• Bayes classifier
• Class distribution
• Class conditional 

distribution of features
• Decision boundary
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