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In-person Expectations

* Please do not come to class if you feel sick or have symptoms
of a potentially contagious illness.

* This holds even if you know you do not have COVID-19 but
have symptoms that may be a sign of other contagious
illnesses, such as a cold or flu.

* Coming to class when sick is NOT a sign of hard work. Be
responsible, care for your classmates and campus community.



Announcements

e (Canvas fixed

* Late days —total 4, no more than 1 for a QnA, no more than 2
fora HW

* Tentative HW due dates have been posted

e QnAl out today
—due in 1 week, Sept 8 11:59 pm ET

e Office hours Day Time Location Staff
Mondays 1:30 pm TBA Christina
Tuesdays 3:30 pm TBA Spoorthi
Wednesdays 2:30 pm TBA Haitian
Zoom (link

Thursdays 10:30 am Aarti

on Canvas)


https://canvas.cmu.edu/courses/25787/external_tools/8366

Notion of “Features aka Attributes”

Input X ¢ X

remember to wake up when class ends

Document/Article =
wake ends to class remember up when

How to represent inputs mathematically?
« Document vector X > ldeas?
— list of words (different length for each document)

— frequency of words (length of each document = size of
vocabulary), also known as Bag-of-words approach 3 Why might

Misses out context!! this be
— list of n-grams (n-tuples of words) limited?
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Notion of “Features aka Attributes”

Input X ¢ X

Market information

How to represent inputs mathematically?

* |Image X = intensity/value at each pixel, fourier transform
values, SIFT etc.

* Market information X = daily/monthly? price of share for past
10 years



Distribution of Inputs

Input X ¢ X

Discrete Probability Distribution P(X) = P(X=x) |
e.g. P(head) =%, P(word x in text) =

Probabilities in a distribution sum to 1
> P(X=x)=1 P(tail) =1 —p(head), >, p, =

Continuous Probability density p(x)  P(a<=X<=b) =ff p(x)dx
e.g. p(brain activity)

Probability density integrate to 1
[p(x)dx =1




Distributions in Supervised tasks

Input X ¢ X

Distribution learning also arises in supervised learning tasks
e.g. classification

P(Y=y) Distribution of class labels
P(X =x |Y =vy) Distribution of words in ‘news’ documents
Distribution of brain activity under ‘stress’

The 16th- and 17th-century English and German
press output compared

Olaf simons’10

P(Y =y|X =x) Distribution of topics given document
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Classification

Goal: Construct prediction rule f : X — Y

High Stress
> Moderate Stress
Low Stress

Input feature vector, X Label, Y

In general: label Y can belong to more than two classes
X is multi-dimensional (many features represent an input)

But lets start with a simple case:
label Y is binary (either “Stress” or “No Stress”)
X is average brain activity in the “Amygdala”



Binary Classification

—9-00-000000-00¢00 0000 ® Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X : :
(X) subject

Model X and Y as random variables with joint distribution Pyy

Training data {X, Y.}"._; ~iid (independent and identically distributed)
samples from P,y

Test data {X,Y} ~ iid sample from P,y

Training and test data are independent draws from same distribution



Bayes Classifier

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
Py O Test
fX) ' subject

Model X and Y as random variables

P(Y = +|X) P(Y = «|X)
1

0.5 - .

0

For a given X, f(X) = label Y which is more likely

f(X) = arg max P(Y =y|X =)
=y
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Optimality of Bayes Classifier



Bayes Rule

Bayes Rule: P(Y|X) = P(XIIDS(/))(I;(Y)
P(Y =yX =2) = DE= ﬂ?xzfagw =Y)

To see this, recall:
P(X,Y) = P(X]Y) P(Y)

P(Y,X) = P(Y]X) P(X)

Thomas Bayes 12



Bayes Classifier — equivalent form

Bayes Rule: P(Y|X) = P(X]LBE;(J;(Y)
PO =i =) = S

Bayes classifier:

f(X)= arg max P(Y = y|X = z)

Y =y
= argmax P(X =z|Y =y)P(Y =vy)
_yl J\ J
| |
Class conditional Distribution of class

Distribution of features
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Bayes Classifier

e © ® Stress

low high
_ o ® No Stress
X, average brain activity in “Amygdala”

£(X) y O Test

subject

f(X) = arg }rpax P(X =x|]Y =y)P(Y =vy)
==y
\ J\ J

| |
Class conditional Class distribution
Distribution of features

We can now consider appropriate distribution models for the two terms:
Class distribution P(Y=y)

Class conditional distribution of features P(X=x|Y=y) y



Modeling class distribution

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling Class distribution P(Y=y) = Bernoulli(0)

P(Y =@)=6

Like a coin flip
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Modeling class distribution

® High Stress

~9-00-000000-000-10 0000
low high
o @ Low Stress
X, average brain activity in “Amygdala”

f(X) : - O fest

subject

» How do we model multiple (>2) classes?

Modeling Class distribution P(Y) = Multinomial(py,pw,p\)
P(Y =@)=py P(Y =0)=pu P(Y =@)=p,

N PhtpPmtp =1

Like a dice roll L’
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Modeling class conditional
distribution of features

e L @ Stress
low high
® No Stress
X, average brain activity in “Amygdala”
O Test
f(X R :
(X) subject

Modeling class conditional distribution of feature P(X=x|Y=y)
» What distribution would you use?

E.g. P(X=x|Y=y) = Gaussian N(u,,0%)
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1-dim Gaussian distribution

X is Gaussian N(u,0?)

L (=2
P(X =z|u,0) =

-1 u:O 1 2 3 =0 -2 -1 u=0
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Why Gaussian?

* Properties

— Fully Specified by first and second order statistics
* Uncorrelated < Independence

— X, Y Gaussian => aX+bY Gaussian

— Central limit theorem: if X, ..., X, are any iid random
variables with mean p and variance 6% < o

then

V(i X — 1) ~ N(0,0%)



1-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ Y J\ Y )
Learn parameters 6, 1, CI_ass-con.ditionaI Class distribution
5, from data D|str|but|jon of features \
Gaussian(p,, 6% Bernoulli(6)

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)
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1-dim Gaussian Bayes classifier

f(X) = arg gpax P(X =z|Y =y)P(Y =vy)

=y
\ J\ )
Class conditional' Clz'ass distribution
Distribution of features
» What decision j \
boundaries can we . .
get in 1-dim? Gaussian(p,, 62,) Bernoulli(6)

P(Y = ¢)P(X =z|Y =) P(Y = ¢)P(X = z|Y = o)

21



22



d-dimensional inputs

High Stress
> Moderate Stress
Low Stress

Input feature vector, X Label, Y

Modeling class conditional distribution of feature P(X=x|Y=y)

» What distribution would you use?

E.g. P(X=x|Y=y) = Gaussian N(u,%,)
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d-dim Gaussian distribution

X is Gaussian N(, 2) W is d-dim vector, % is dxd dim matrix
P(X = x|p,X) = L exp (—l(x — )2 (x - u))
| Vv (2m)4[x] 2 |
X, X
3 =0 2
d=2 ” |
X = [Xy; X5




d-dim Gaussian Bayes classifier

f(X)

= arg max P(X =z|Y =y)P(Y =y)

=Y
\ J\ )

Learn parameters 6, y,,
2, from data

| |
Class conditional Class distribution

Distribution of features \

/

Gaussian(p,, Z,) Bernoulli(0)

X2
A

P(Y = O)P(X =ac|Y = o)

% @ P(Y = o) P(X =z|Y = o)

3 25
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d-dim Gaussian Bayes classifier

f(X)= argmax P(X = z|Y = y)P(Y = y)

Y=y
\ J\ )
» What decision Class conditional Class distribution
boundaries can we  Distribution of features
get in d-dim? e \,
Gaussian(u,,Z,) Bernoulli(0)

A

Decision Boun

X1




Decision Boundary of Gaussian Bayes

* Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

Compute the ratio

T - —
_ @exp (= p)E (- ) +(fﬂ—uo)TEol(o:—uo) 0
’21’ 2 2 1—0

In general, this implies a quadratic equation in x. But if ;= %, then
guadratic part cancels out and decision boundary is linear. 27



Recap

* Bayes classifier — assumes P,y known, optimal for 0/1 loss

f(X)= argmaxP(Y = y|X =x)
Y =y

= argmax P(X =Y =y)P(Y =vy)
=y
\ J\ J

| |
Class conditional Class distribution
Distribution of features

* Gaussian Bayes classifier — assumes
Class distribution is Bernoulli/Multinomial
Class conditional distribution of features is Gaussian

* Decision boundary — (binary classification)
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Glossary of Machine Learning

Feature/Attribute
iid

Bayes classifier
Class distribution

Class conditional
distribution of features

Decision boundary
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