
10-315 Intro to Machine Learning HW1

INSTRUCTIONS

• Due: Wednesday, September 22 2021 at 11:59 PM EDT.

• Format: Complete this pdf with your work and answers. Whether you edit the latex source, use a pdf
annotator, or hand write / scan, make sure that your answers (tex’ed, typed, or handwritten) are within the
dedicated regions for each question/part. If you do not follow this format, we may deduct points.

• How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 10-315, click
on the appropriate Written assignment, and upload your pdf containing your answers. Don’t forget to submit
the associated Programming component on Gradescope if there is any programming required.

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought about the
problems on your own. It is also OK to get clarification (but not solutions) from books or online resources,
again after you have thought about the problems on your own. There are two requirements: first, cite your
collaborators fully and completely (e.g., “Jane explained to me what is asked in Question 2.1”). Second, write
your solution independently: close the book and all of your notes, and send collaborators out of the room,
so that the solution comes from you only. See the Academic Integrity Section on the course site for more
information.
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Q1. [24 pts] MLE and MAP

Consider the following distribution with parameters k and α:

p(x | k, α) =

{
αkα

xα+1 x ∈ [k,∞)

0 otherwise

We also have that k ∈ (0,∞) and α ∈ (0,∞).

This distribution is often used for modeling the distribution of wealth in society, fitting the trend that a large portion
of wealth is held by a small fraction of the population. This is due to its nature as a skewed, heavy-tailed distribution
(notice that the probability decays polynomially in value of the random variable x, unlike Gaussian, exponential,
Laplace or Poisson distributions where the probability decays exponentially in the value of the random variable).

Suppose you have a dataset D which contains N i.i.d samples x1,x2,...,xN drawn from the above distribution.

(a) [4 pts] Derive the log-likelihood `(k, α;D).

`(k, α;D):

(b) [8 pts] Give the MLE for the parameter α, assuming parameter k is fixed.

α̂MLE:
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(c) [4 pts] Next, give the MLE for the parameter k.

Hint: You may be tempted to set k to infinity, but when k =∞, what happens to p(x | k, α)?

k̂MLE:

We’ve seen in lecture how classifiers like Bayes and Naive Bayes use information about the distributions of the
variables in the training data to derive the classifier. MLE is commonly used for estimating the parameters of
these distributions since it is generally easy to compute and behaves well asymptotically (i.e. with lots of data).
However, using MLE can be problematic when we don’t have enough data to get good parameter estimates. When
this happens, we need some other method of estimating parameters that doesn’t require lots of training data. This
is where MAP estimation can be useful since MAP combines a prior assumption about the underlying distribution
with the given training data to estimate parameters. In the following question we will explore how the MAP and
MLE estimates change as we vary the prior and the size of the training data.

(d) [8 pts] MAP Estimation for Bernoulli random variables.

Consider a dataset D composed of the outcomes of independent coin flips using an unbiased coin. Taking each
coin flip to be a Ber(θ) random variable, we can use MAP to estimate the coin’s bias θ. We’ll use as a prior
θ ∼ β(x, y). Here, the prior represents pseudo-observations; we haven’t observed these outcomes, but they
reflect our prior beliefs about the bias of the coin.

Our goal is to consider what happens as we vary (1) the size of D and (2) the correctness of our prior. Com-
pute both the MAP and MLE estimates of θ under the following contexts: [You can use the MAP and MLE
expressions from lecture slides.]
(a) D = {0H, 2 T}, θ ∼ β(4, 4)
(b) D = {7H, 3 T}, θ ∼ β(4, 4)
(c) D = {15H, 11 T}, θ ∼ β(4, 4)
(d) D = {15H, 11 T}, θ ∼ β(5, 3)
(e) D = {40H, 40 T}, θ ∼ β(5, 3)
(f) Give a short (2 - 3 sentence) summary of your findings regarding how i) the size of the dataset and ii) our
choice of prior affects the estimate for θ, given that the coin is actually fair. For (d) and (e) consider the effect
an incorrect prior has on our MLE and MAP estimate for θ.

Solution:
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Q2. [26 pts] Naive Bayes

Consider a simple learning problem of determining whether Alice and Bob will go to hiking, where Y : Hike ∈ {T, F}
given the weather conditions X1 : Sunny ∈ {T, F}, and X2 : Windy ∈ {T, F} by a Naive Bayes classifier. Using
training data, we estimated the parameters P (Hike = T ) = 0.5, P (Sunny = T |Hike = T ) = 0.8, P (Sunny =
T |Hike = F ) = 0.7, P (Windy = T |Hike = T ) = 0.4 and P (Windy = T |Hike = F ) = 0.5. Assume that the true
distribution of X1, X2, and Y satisfies the Naive Bayes assumption of conditional independence with the above
parameters.

(a) [2 pts] Assume X1 : Sunny and X2 : Windy are truly independent given Hike. Write down the Naive Bayes
decision rule for this problem using both X1 and X2 as features.

Solution:

(b) [8 pts] Given the decision rule above, write down P(X1,X2|Y) and the Naive Bayes decision for each setting
of the weather conditions in the table below:

X1 X2 Y P(X1,X2|Y) f(X1,X2)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Table 1: Y is the true decision, while f(X1, X2) is the decision made by Naive Bayes classifier.

Solution:

(c) [2 pts] What is the estimated error rate i.e. P(f(X1,X2) 6= Y) for the Naive Bayes classifier using these two
features?

Solution:
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Next, suppose we gather more information about weather conditions and introduce a new feature denoting X3 :
Rainy ∈ {T, F}. Assume that each day the weather can be either Rainy or Sunny. That is, it can not be both
Sunny and Rainy (similarly, it can not be not Sunny and not Rainy).

(d) [2 pts] In the above new case, are any of the Naive Bayes assumptions violated? Why or why not?

Solution:

(e) [8 pts] Given the decision rule above, write down P(X1,X2,X3|Y),P(X1|Y)P(X2|Y)P(X3|Y) and the Naive
Bayes decision for each setting of the weather conditions in the table below. Notice that when calculating the
Naive Bayes prediction f(X1, X2, X3), any violations of the Naive Bayes assumption are ignored.

X1 X2 X3 Y P(X1,X2,X3|Y) P(X1|Y)P(X2|Y)P(X3|Y) f(X1,X2,X3)
F F F F
F F F T
F F T F
F F T T
F T F F
F T F T
F T T F
F T T T
T F F F
T F F T
T F T F
T F T T
T T F F
T T F T
T T T F
T T T T

Table 2: Y is the true decision, while f(X1, X2, X3) is the decision made by Naive Bayes classifier.

Solution:
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(f) [4 pts] What is the estimated error rate when the Naive Bayes classifier uses all three features? Does the
performance of Naive Bayes improve by observing the new feature Rainy? Explain why or why not.

Solution:
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Q3. [40 pts] Programming

This part of the assignment will have you implement a Naive Bayes classifier. You will submit your completed
naive bayes.py file to Gradescope, where we will run your code against a suite of tests. Your grade will be
automatically determined from the testing results. Since you get immediate feedback after submitting your code and
you are allowed to submit as many different versions as you like (without any penalty), it easy for you to check your
code as you go.

Our autograder requires that you write your code using Python 3.6.9 and Numpy 1.17.0. Otherwise, when running
your program on Gradescope, it may produce a result different from the result produced on your local computer.
Please do not include print statements outside the provided functions, as this may crash the auto-
grader.

The file hw2data.pkl contains data regarding words used in articles from The Economist and articles from The
Onion. This programming assignment is focused on identifying which words are characteristic of which articles. You
can load the pickle file into Python using pickle. After loading the data, you will see that there are 5 variables:
Vocabulary, XTrain, yTrain, XTest, and yTest.

• Vocabulary is a V ×1 dimensional array that contains every word appearing in the documents. When we refer
to the jth word, we mean Vocabulary[j,0].

• XTrain is a n×V dimensional matrix describing the n documents used for training your Naive Bayes classifier.
The entry XTrain[i,j] is 1 if word j appears in the ith training document and 0 otherwise.

• yTrain is a n× 1 dimensional matrix containing the class labels for the training documents. yTrain[i,0] is
1 if the ith document belongs to The Economist and 2 if it belongs to The Onion.

• Finally, XTest and yTest are the same as XTrain and yTrain, except instead of having n rows, they have m
rows. This is the data you will test your classifier on and it should not be used for training.

Logspace Arithmetic

When working with very large or very small numbers (such as probabilities), it is useful to work in logspace to avoid
numerical precision issues. In logspace, we keep track of the logs of numbers, instead of the numbers themselves. For
example, if p(x) and p(y) are probability values, instead of storing p(x) and p(y) and computing p(x) ∗ p(y), we work
in log space by storing log(p(x)), log(p(y)), and we can compute the log of the product, log(p(x) ∗ p(y)), by taking
the sum in logspace: log(p(x) ∗ p(y)) = log(p(x)) + log(p(y)).

If we want the sum of two probabilities, it’s a little trickier: if l(x) = log p(x) and l(y) = log p(y), then log(p(x) +
p(y)) = log(exp(l(x)) + exp(l(y))). If we compute this expression naively we risk overflow or underflow. A good
workaround is to factor out exp(l(x)) or exp(l(y)), whichever is larger, before computing the sum.

Training Naive Bayes

(a) [8 pts] Complete the function D = NB XGivenY(XTrain, yTrain, a=0.001, b=0.9). The output D is a 2×V
matrix, where for any word index w ∈ {1, . . . , V } and class index y ∈ {1, 2}, the entry D[y-1,w-1] is the MAP
estimate of θyw = P (Xw = 1|Y = y) with a Beta(1.001,1.9) prior distribution. Here we define a = α − 1 and
b = β − 1 where α, β are parameters of the Beta distribution. To help with numerical issues clip D to be in
[10−5, 1− 10−5] before this function returns it.

(b) [8 pts] Complete the function p = NB YPrior(yTrain). The output p is the MLE for ρ = P (Y = 1).

(c) [8 pts] Complete the function yHat = NB Classify(D, p, X). The input X is an m× V matrix containing m
feature vectors (stored as its rows). The output yHat is a m×1 matrix of predicted class labels, where yHat[i]

is the predicted label for the ith row of X. So, the output vector should take the form [[y0],[y1],...,[ym−1]]. [Hint:
In this function, you will want to use Logspace Arithmetic to avoid numerical problems.]
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(d) [2 pts] Complete the function e = NB ClassificationAccuracy(yHat, yTruth) which measures the average
number of times yHat agrees with yTruth as a performance metric for the Naive Bayes classifier.

Questions

(e) [4 pts] Train your classifier on the data contained in XTrain and yTrain by running

D = NB_XGivenY(XTrain, yTrain)

p = NB_YPrior(yTrain)

Use the learned classifier to predict the labels for the article feature vectors in XTrain and XTest by running

yHatTrain = NB_Classify(D, p, XTrain)

yHatTest = NB_Classify(D, p, XTest)

Use the function NB ClassificationAccuracy to measure and report the training and testing accuracy by
running

trainAcc = NB_ClassificationAccuracy(yHatTrain, yTrain)

testAcc = NB_ClassificationAccuracy(yHatTest, yTest)

How do the train and test accuracies compare? Which is likely to be more representative of the performance
of the trained classifier on a new collection of articles?

Solution:

(f) [5 pts] In this question we explore how the size of the training data set affects the test and train accuracy. For
each value of m in {100, 130, 160, . . . , 450}, train your Naive Bayes classifier on the first m training examples
(that is, use the data given by XTrain[0:m] and yTrain[0:m]). Plot the training and testing accuracy for
each such value of m. The x-axis of your plot should be m, the y-axis should be accuracy, and there should be
one curve for training accuracy and one curve for testing accuracy.

• Explain the general trend of both the curves.

• What would you expect to happen to the test accuracy of the classifier if the Naive Bayes assumption is
satisfied and we have infinite training data?
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Solution:

(g) [5 pts] We’re now going to compare Naive Bayes with logistic regression. For the logistic regression
components, you are encouraged/expected to use the code logistic regression.py we provide in
the handout. To examine things in more detail and ensure reasonable runtime/convergence/etc., we’re going
to restrict our base dimension to d = 10. In other words, our train data matrix will now be 450× 10 and our
test data matrix will now be 153× 10. Just select the first 10 features from the vocabulary – ensure that you
do not accidentally sort or shuffle the vocabulary before selecting these 10 features (for autograder purposes).

1. [2 pts] Baseline values (on this 10-feature dataset)

(a) Naive Bayes: report the train accuracy and test accuracy of your learned classifier. Clearly label
which is train and which is test. No other work required.

Solution:

(b) Logistic regression: run gradient descent for 5000 epochs with learning rate 0.1, and report the final
train accuracy and test accuracy. Clearly label which is train and which is test. No other work
required.

Solution:

2. [2 pts] Now we will study what happens when we replicate features (specifically, we’ll replicate 1 feature
many times). We’ll compare Naive Bayes to logistic regression. Please add 500 repeats of the feature at
index 4 (0-indexed). Your train data matrix will be 450×510 and your test data matrix will be 153×510.
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(a) Naive Bayes: recompute the train accuracy and test accuracy of your learned classifier. Clearly label
which is train and which is test. No other work required.

Solution:

(b) Logistic regression: run gradient descent for 5000 epochs with learning rate 0.1, and compute the
final train accuracy and test accuracy. Clearly label which is train and which is test. No other work
required.

Solution:

3. [1 pt] What do you notice about Naive Bayes vs. logistic regression? Please just write 1 sentence.

Solution:

Collaboration Questions
After you have completed all other components of this assignment, report your answers to the collaboration policy
questions detailed in the Academic Integrity Policies found on the course site.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details?

3. Did you find or come across code that implements any part of this assignment ? If so, include full details.


