10-315 Intro to Machine Learning HW4

INSTRUCTIONS

e Due: Tuesday, 30 November 2021 at 10:00 AM EDT.

e Format: Complete this pdf with your work and answers. Whether you edit the latex source, use a pdf
annotator, or hand write / scan, make sure that your answers (tex’ed, typed, or handwritten) are within the
dedicated regions for each question/part. If you do not follow this format, we may deduct points.

e How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 10-315, click
on the appropriate Written assignment, and upload your pdf containing your answers. Don’t forget to submit
the associated Programming component on Gradescope if there is any programming required.

e Policy: See the course website for homework policies and Academic Integrity.
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Q1. [10pts] Conceptual questions
(a) [2pts] Assume we are given a dataset X for which the eigenvalues of the covariance matrix are: (2.2, 1.7, 1.4,

0.8, 0.4, 0.2, 0.15, 0.02, 0.001). What is the smallest value of K we can use if we want to retain 90% of the
variance (sum of all the projected variances) using the first K principal components?

(b) [2pts] Select all that is TRUE:
] A) PCA is robust to outliers
U] B) The principal component directions found by linear PCA are uncorrelated
U C) Minimizing reconstruction error of data points using projection on to the principal components

is equivalent to maximizing projected variance of the datapoints.

(c) [2pts] True or False: It is reasonable to pick the number of clusters K in K-means clustering by minimizing the
sum of squared distances between the data points and the cluster centers. Explain your answer.

(d) [2pts] Recall that in the E-step of the EM algorithm, we “softly” assign each data point to the the clusters.
Under what parameter setting will the soft assignment in the EM algorithm with a single-variate GMM reduces
to hard assignment (as we've discussed in K-means)?

(e) [2pts] True or False: The EM algorithm will always converge to the global minimum because each EM step
will monotonically improve the likelihood. Please give your explanation.




Q2. [24pts] Kernel PCA

(a) [4pts] PCA in high-dimensional feature spaces

Recall that for standard PCA, the principal components for a zero-centered dataset X € RV*P are found by
eigen decomposition of its covariance matrix C. (Note that N is the number of samples, and D is the number
of features).

Let x; € RP be the i*"* row of X as a column vector, and the covariance matrix can be expressed as:
1 X
T
C= N Z XiX; -
i

The ;" eigenvector (principal component) u; and its corresponding eigenvalue A; can be found by solving,
CUj = )\ju]'

Now let us consider a mapping ¢ : R? — RM  which projects each original data point onto a higher dimensional
space (M > D). This space is called feature space. It may be possible to obtain better dimensionality
reduction when PCA is applied in the (nonlinear) feature space.

First assume that the new data points after projection are also zero-centered, meaning

N
Z P(x;) =0

and they have S as the covariance matrix

1 N

S = N ; P(xi)p(xi) -
If we do standard PCA directly in feature space by solving the eigen decomposition problem,

SVJ‘ = )\jVj,

what could potentially be problematic? Explain with just one or two sentences.

Hint: think about the size of S. Please provide a brief explanation.

In the subsequent problems, we will derive an alternate solution using kernels where the PCA in feature space can
be achieved by eigendecomposition of an N x N matrix, instead of the M x M covariance matrix S.

(b) [6pts]
Show that the 5 principal component v; can be expressed as a linear combination of transformed data points.
That is, there exists an N-dimensional vector w; = (wj1,..., Wjn, ... ,ij)T such that:

N
V= iji¢(xi) = ¢(X)ij
i=1



where ¢(X) = [¢(x1), p(X2), ..., p(xn)]T is the N x M transformed data matrix.

Note: We only care about the eigenvalues that are non-zero.

Notice that this is akin to the trick we used for kernelizing logistic regression and linear/ridge regression. Now you
will show that the weight vector w;,V;j can be found by solving a N x N eigen decomposition problem. The idea
here is to replace the covariance matrix S with kernel matrix

K e RN K, ;= k(xi,x;) = ¢(xi) o(x;),
to avoid working in the feature space directly.
(c) [8pts]
Prove that any w;, of which the corresponding eigenvalue A; is non-zero, can be obtained by solving,
KWj = N)\jo

Hint: start from the original eigen decomposition problem in terms of S and v; and use the results from the
previous questions to arrive at the above equation. Also, you may assume K is invertible.




(d) [Gpts]
Notice that recovering the PC vector v; from the weight vector w; requires writing out the high-dimensional
feature representation ¢(X), which is problematic. In kernel PCA we avoid computing the PC vectors, and
instead directly work with projections of data points onto the PC components. Show that the projection of
any transformed point ¢(x) onto the PC v; can be computed using the kernel and w; only as:

D(x) v = [k(x,x1) k(x,%2) ... k(x, xn)]W;
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Q3. [18pts] Programming: K-means

The following questions should be completed after you work through the programming portion of this assignment.

(a) [6pts] K=2
Include the images of the cluster centers after running k-means with two clusters.
Centers K=2:

(b) [6pts] K=5

Include the images of the cluster centers after running k-means with five clusters.

Centers K=5:

(c) [6pts] K=10

Include the images of the cluster centers after running k-means with ten clusters.

Centers K=10:




Q4. [28pts] Programming: PCA and GMM

The following questions should be completed after you work through the programming portion of this assignment.

(a) [12pts] PCA
Include the plots of the toy dataset before and after running PCA with K=2.

PCA before and after:

Include the plots of the MNIST zeros and ones dataset after running PCA with K=2.
PCA MNIST:
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(b) [8pts] GMM Toy Datasets
Include the plots of after learning the GMM parameters for K=2 on toy dataset one and two.
GMM Toy 1, K=2: GMM Toy 2, K=2:

(c) [8pts] GMM MNIST Zeros and Ones

Include the plots of after learning the GMM parameters for K=2 and K=5 on the MNIST zeros and ones
dataset.

GMM MNIST, K=2: GMM MNIST, K=5:




