INSTRUCTIONS

- Due: Tuesday, 30 November 2021 at 10:00 AM EDT.
- Format: Complete this pdf with your work and answers. Whether you edit the latex source, use a pdf annotator, or hand write / scan, make sure that your answers (tex'ed, typed, or handwritten) are within the dedicated regions for each question/part. If you do not follow this format, we may deduct points.
- How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 10-315, click on the appropriate *Written* assignment, and upload your pdf containing your answers. Don't forget to submit the associated *Programming* component on Gradescope if there is any programming required.
- Policy: See the course website for homework policies and Academic Integrity.

Name	
Andrew ID	
Hours to complete (both written and programming)?	

For staff use only

	101	stair use c	,111 <i>y</i>	
Q1	Q2	Q3	Q4	Total
/ 10	/ 24	/ 18	/ 28	/ 80

Q1. [10pts] Conceptual questions

(a)	[2pts] Assume we are given a dataset X for which the eigenvalues of the covariance matrix are: (2.2, 1.7, 1.4 0.8, 0.4, 0.2, 0.15, 0.02, 0.001). What is the smallest value of K we can use if we want to retain 90% of the variance (sum of all the projected variances) using the first K principal components?
(b)	[2pts] Select all that is TRUE:
(~)	A) PCA is robust to outliers
	B) The principal component directions found by linear PCA are uncorrelated
	C) Minimizing reconstruction error of data points using projection on to the principal component is equivalent to maximizing projected variance of the datapoints.
(c)	[2pts] True or False: It is reasonable to pick the number of clusters K in K-means clustering by minimizing the sum of squared distances between the data points and the cluster centers. Explain your answer.
(d)	[2pts] Recall that in the E-step of the EM algorithm, we "softly" assign each data point to the the clusters Under what parameter setting will the soft assignment in the EM algorithm with a single-variate GMM reduce to hard assignment (as we've discussed in K-means)?
(e)	[2pts] True or False: The EM algorithm will always converge to the global minimum because each EM step will monotonically improve the likelihood. Please give your explanation.

Q2. [24pts] Kernel PCA

(a) [4pts] PCA in high-dimensional feature spaces

Recall that for standard PCA, the principal components for a zero-centered dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ are found by eigen decomposition of its covariance matrix \mathbf{C} . (Note that N is the number of samples, and D is the number of features).

Let $\mathbf{x}_i \in \mathbb{R}^D$ be the i^{th} row of \mathbf{X} as a column vector, and the covariance matrix can be expressed as:

$$\mathbf{C} = \frac{1}{N} \sum_{i}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}.$$

The j^{th} eigenvector (principal component) \mathbf{u}_j and its corresponding eigenvalue λ_j can be found by solving,

$$\mathbf{C}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Now let us consider a mapping $\phi : \mathbb{R}^D \to \mathbb{R}^M$, which projects each original data point onto a higher dimensional space (M > D). This space is called **feature space**. It may be possible to obtain better dimensionality reduction when PCA is applied in the (nonlinear) feature space.

First assume that the new data points after projection are also zero-centered, meaning

$$\sum_{i}^{N} \phi(\mathbf{x}_i) = \mathbf{0}$$

and they have S as the covariance matrix

$$\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^{\top}.$$

If we do standard PCA directly in feature space by solving the eigen decomposition problem,

$$\mathbf{S}\mathbf{v}_{j}=\lambda_{j}\mathbf{v}_{j},$$

what could potentially be problematic? Explain with just one or two sentences.

Hint: think about the size of **S**. Please provide a brief explanation.

In the subsequent problems, we will derive an alternate solution using kernels where the PCA in feature space can be achieved by eigendecomposition of an $N \times N$ matrix, instead of the $M \times M$ covariance matrix S.

(b) [6pts]

Show that the j^{th} principal component \mathbf{v}_j can be expressed as a linear combination of transformed data points. That is, there exists an N-dimensional vector $\mathbf{w}_i = (w_{i1}, \dots, w_{in}, \dots, w_{iN})^{\mathrm{T}}$ such that:

$$\mathbf{v}_j = \sum_{i=1}^N w_{ji} \boldsymbol{\phi}(\mathbf{x}_i) = \boldsymbol{\phi}(\mathbf{X})^{\top} \mathbf{w}_j$$

	Note: We only care about the eigenvalues that are non-zero.	
1C		TN.T
s	the that this is akin to the trick we used for kernelizing logistic regression and linear/ridge regression. How that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix	
s	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem.	
e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix	
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$	
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly.	The
e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts]	The i
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving	The i
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The
sl e i	how that the weight vector $\mathbf{w}_j, \forall j$ can be found by solving a $N \times N$ eigen decomposition problem. is to replace the covariance matrix \mathbf{S} with kernel matrix $\mathbf{K} \in \mathbb{R}^{N \times N}, \mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j),$ oid working in the feature space directly. [8pts] Prove that any \mathbf{w}_j , of which the corresponding eigenvalue λ_j is non-zero, can be obtained by solving $\mathbf{K} \mathbf{w}_j = N \lambda_j \mathbf{w}_j$ Hint: start from the original eigen decomposition problem in terms of \mathbf{S} and \mathbf{v}_j and use the results	The

(-1)	١.	6		L]
(\mathbf{d})	,	U	v	US.

Notice that recovering the PC vector \mathbf{v}_j from the weight vector \mathbf{w}_j requires writing out the high-dimensional feature representation $\phi(\mathbf{X})$, which is problematic. In kernel PCA we avoid computing the PC vectors, and instead directly work with projections of data points onto the PC components. Show that the projection of any transformed point $\phi(\mathbf{x})$ onto the PC \mathbf{v}_j can be computed using the kernel and \mathbf{w}_j only as:

$$\phi(\mathbf{x})^{\top}\mathbf{v}_j = [k(\mathbf{x}, \mathbf{x}_1) \ k(\mathbf{x}, \mathbf{x}_2) \dots k(\mathbf{x}, \mathbf{x}_N)]\mathbf{w}_j$$

Q3. [18pts] Programming: K-means

	[6pts] K=2 Include the images of the cluster centers after running k-means with two clusters.
	Centers K=2:
(b)	[6pts] K=5 Include the images of the cluster centers after running k-means with five clusters.
	include the images of the cluster centers after running k-means with five clusters.
	Centers K=5:
(c)	

Centers IX—10.		

Q4. [28pts] Programming: PCA and GMM

Tho	following	amostions	chould l	ho com	alotod	ofter	37011	work	through	tho	programming	nortion (of this	accionmar	a+
Tue	IOHOWHIG	questions	snould i	oe com	netea	aner	you	WOLK	unrougn	une	programming	portion (n = n	assignmei	16.

(a) [12pts] PC	A
----------------	---

Include the plots of the toy dataset before and after running PCA with K=2.

CA before and after:
1 d 1 d Cd MNICE 1 1 d d Cd CDCA 2d IZ 0

Include the plots of the MNIST zeros and ones dataset after running PCA with K=2.

PCA MNIST:	

(b) [8pts] GMM Toy Datasets

GMM Toy 1, K=2:	GMM Toy 2, K=2:
nclude the plots of after learning the	GMM parameters for K=2 and K=5 on the MNIST zeros an
nclude the plots of after learning the lataset.	GMM parameters for K=2 and K=5 on the MNIST zeros an GMM MNIST, K=5:
nclude the plots of after learning the lataset.	
nclude the plots of after learning the lataset.	
include the plots of after learning the lataset.	
include the plots of after learning the lataset.	
include the plots of after learning the lataset.	
include the plots of after learning the lataset.	
include the plots of after learning the lataset.	
include the plots of after learning the lataset.	
[Spts] GMM MNIST Zeros and Ones Include the plots of after learning the dataset. GMM MNIST, K=2:	