Kernel Trick contd...

Aarti Singh

Machine Learning 10-315 Nov 2, 2020

Dual formulation only depends on dot-products, not on w!

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(x)$ = polynomials of degree exactly d

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \cdot \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$
$$= (x_1z_1 + x_2z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

Using kernels, cost of computing dot products depends on dimension of original features x, and NOT transformed features $\phi(x)$

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

• Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp) $\phi(u) \cdot \phi(v)$

expansion of exp)
$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\dot{\mathbf{u}} - \dot{\mathbf{v}}||^2}{2\sigma^2}\right)^{-\frac{1}{2}}$$

Sigmoid

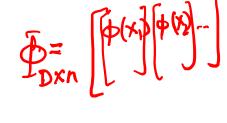
$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$? $K(\mathbf{x},\mathbf{x}') = \varphi(\mathbf{x}) \cdot \varphi(\mathbf{x}) \longleftarrow$

Answer: Mercer kernels K

- K is continuous –
- K is symmetric
- K is positive semi-definite, i.e. $\mathbf{x}^T \mathbf{K} \mathbf{x} \ge 0$ for all \mathbf{x}



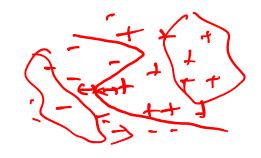
 $= \phi(x).\phi(x)$

= K(x,x)

Ensures optimization is concave maximization

$$\chi^{\dagger}KX = \chi^{\dagger} \underbrace{\Phi^{\dagger}\Phi}_{KX} \times \Phi = \Phi^{\dagger}\Phi$$
 $K = \Phi \cdot \Phi = \Phi^{\dagger}\Phi$
 $K = \Phi \cdot \Phi$
 $K = \Phi$

Overfitting



- Huge feature space with kernels, what about overfitting???

 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: $sign(\mathbf{w}.\Phi(\mathbf{x})+b)$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i}) \qquad \qquad \mathbf{w} \cdot \Phi(\mathbf{x}_{i})$$

$$b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$
for any k where $C > \alpha_{k} > 0$

$$\mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$

Using kernels we are cool!

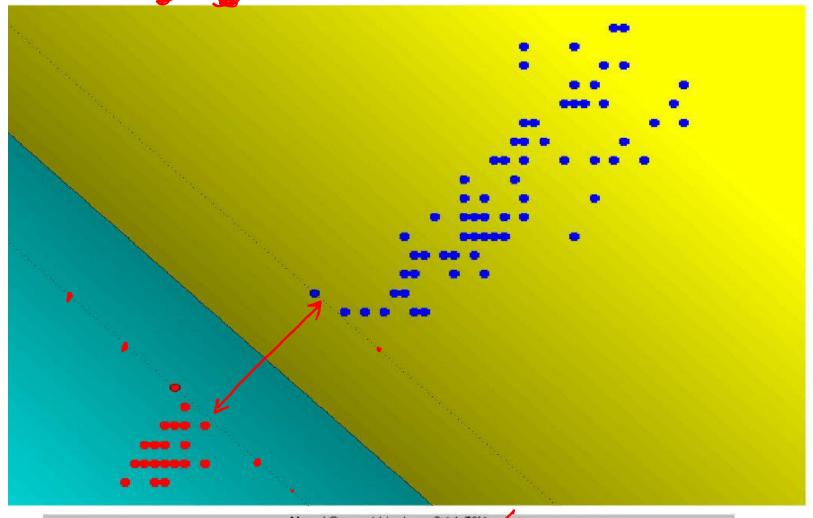
$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors $lpha_{
 m i}$
- At classification time, compute:

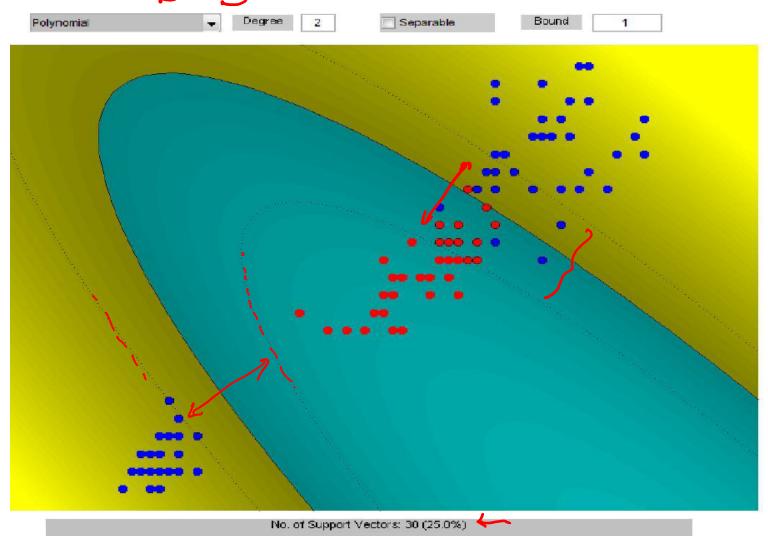
$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})$$

$$b = y_{k} - \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{k}, \mathbf{x}_{i})$$
 for any k where $C > \alpha_{k} > 0$
$$sign(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)$$

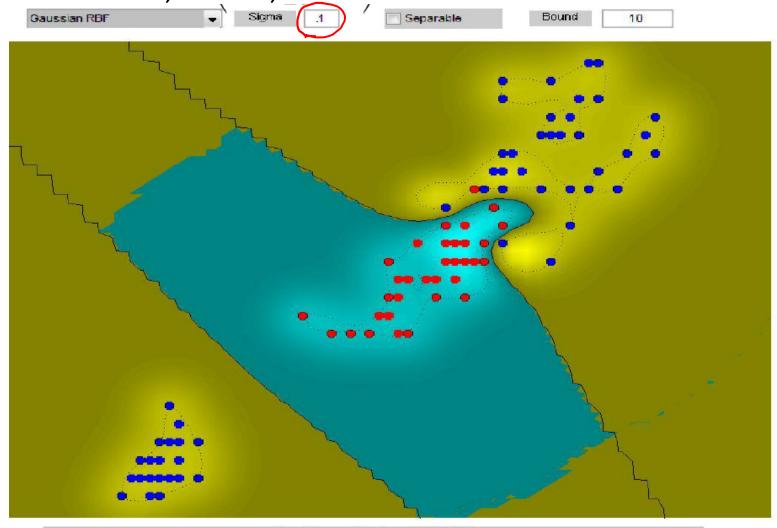
Iris dataset, 2 vs 13, Linear Kernel



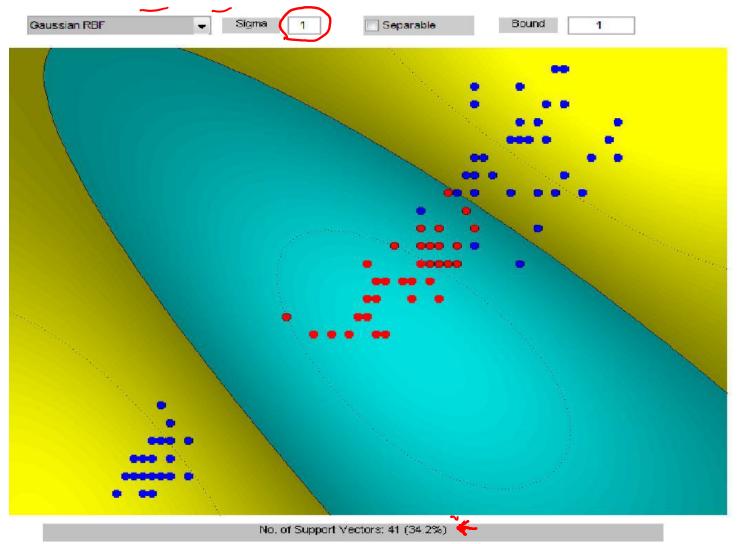
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2



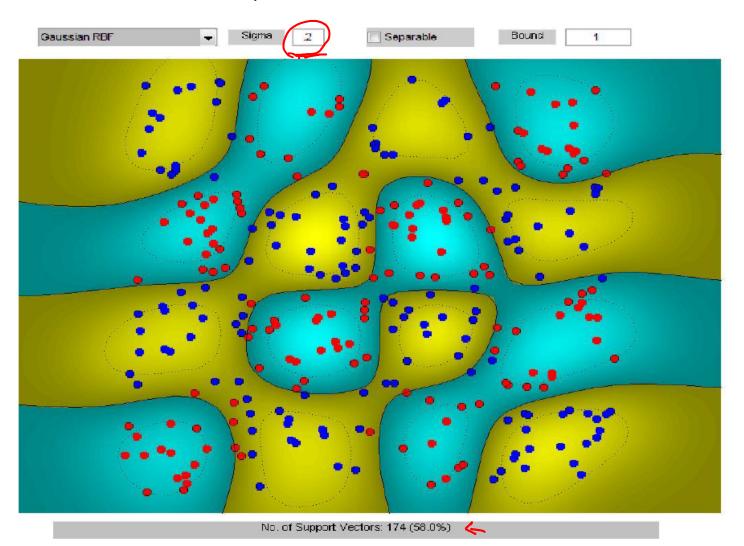
Iris dataset, 1 vs 23, Gaussian RBF kernel



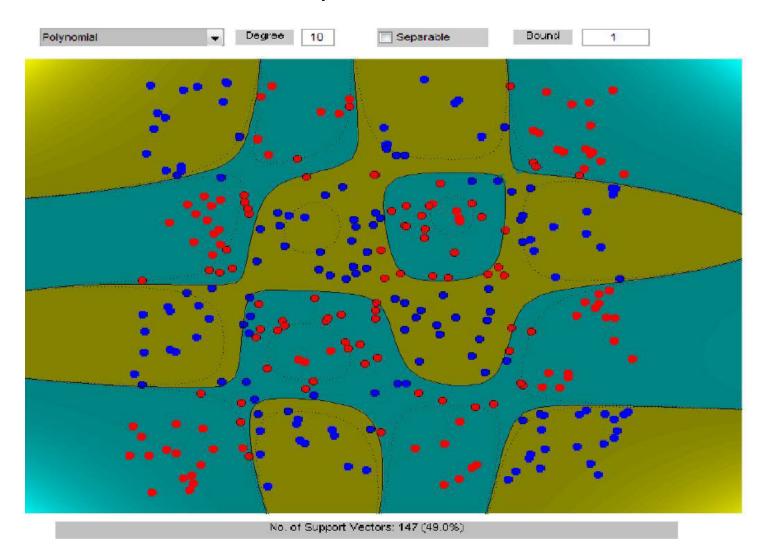
Iris dataset, 1 vs 23, Gaussian RBF kernel



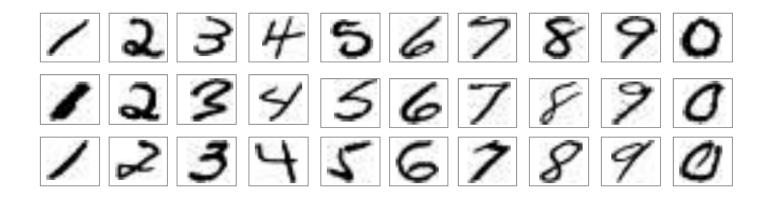
Chessboard dataset, Gaussian RBF kernel



Chessboard dataset, Polynomial kernel



USPS Handwritten digits



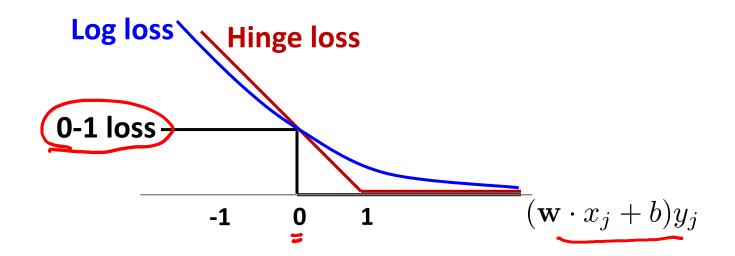
■ 1000 training and 1000 test instances

Results:

SVM on raw images ~97% accuracy

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss

M(C) LE



	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

• Define weights in terms of features:

$$W = \sum_{i} x_{i} y_{i} \phi(x_{i})$$

$$\begin{aligned} \mathbf{w} &= \sum_{i \leftarrow dobt} \alpha_i \Phi(\mathbf{x}_i) \\ P(Y = 1 \mid x, \mathbf{w}) &= \frac{1}{1 + e^{-\left(\sum_i \alpha_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}) + b\right)}} \\ &= \frac{1}{1 + e^{-\left(\sum_i \alpha_i K(\mathbf{x}, \mathbf{x}_i) + b\right)}} \end{aligned}$$

• Derive simple gradient descent rule on α_i

	Regression
Hinge loss	Log-loss
Yes!	Yes!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	Real probabilities

Can we kernelize linear regression?

Linear (Ridge) regression

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2$$

$$\widehat{\boldsymbol{\beta}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$x_i \cdot x_j = \sum_{k=1}^{P} x_i^{(k)} x_j^{(k)}$$

$$\hat{f}_n(X) = X\hat{\beta}$$

Recall

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \cdots & X_1^{(p)} \\ \vdots & \cdots & \vdots \\ X_n^{(1)} & \cdots & X_n^{(p)} \end{bmatrix} \qquad \sum_{\mathbf{k} \in \mathbf{I}} \chi_{\mathbf{k}}^{(i)} \chi_{\mathbf{k}}^{(j)}$$

 A^TA is a p x p matrix whose entries denote the (sample) correlation between the features $(A^TA)_{ij} = [x_1^{(i)}, x_2^{(i)}]$

NOT inner products between the data points – the inner product matrix would be $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ which is n x n (also known as Gram matrix)

Ridge regression (dual)

$$\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2$$

$$\hat{f}_n(X) = \sum_i \hat{\alpha}_i \Phi(X) \cdot \Phi(X_i)$$

Define weights in terms of features:

$$\beta = \sum_{i} \alpha_{i} \Phi(X_{i})$$

$$\min_{\alpha} \sum_{i=1}^{n} (Y_{i} - \sum_{j} \alpha_{j} \Phi(X_{i}) \cdot \Phi(X_{j}))^{2} + \lambda \sum_{ij} \alpha_{i} \alpha_{j} \Phi(X_{i}) \cdot \Phi(X_{j})$$

$$(Y_{n \times i} - K \alpha_{i})^{T} (Y - K \alpha)$$

$$\min_{\alpha} (Y - K \alpha)^{T} (Y - K \alpha) + \lambda \alpha^{T} K \alpha$$

$$Y^{T} + \lambda^{T} K^{T} K \lambda - 2 \lambda^{T} K^{T} Y + \lambda \lambda^{T} K \lambda$$

$$\lambda^{K} K \lambda - 2 \lambda^{T} K^{T} Y + \lambda \lambda^{T} K \lambda = 0$$

$$\lambda^{K} K \lambda - 2 \lambda^{T} K^{T} Y + \lambda \lambda^{T} K \lambda = 0$$

$$\lambda^{K} K \lambda - 2 \lambda^{T} K^{T} Y + \lambda \lambda^{T} K \lambda = 0$$

$$\lambda^{K} K \lambda - \lambda K \lambda = 0$$

$$\lambda^{K} K \lambda - \lambda K \lambda = 0$$

$$\lambda^{K} K \lambda - \lambda K \lambda = 0$$

$$\lambda^{K} K \lambda + \lambda K \lambda = 0$$

$$\lambda^{K} K \lambda + \lambda K \lambda = 0$$

Kernel ridge regression

where
$$\hat{f}_n(X) = \sum_i \hat{lpha}_i K(X,X_i) = \mathbf{K}_X \hat{oldsymbol{lpha}}_{X_i \cap X_i}$$
 $\hat{oldsymbol{lpha}} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y}$ $\mathbf{K}_X(i) = \Phi(X) \cdot \Phi(X_i)$ Vector ixin $\mathbf{K}(i,j) = \Phi(X_i) \cdot \Phi(X_j)$

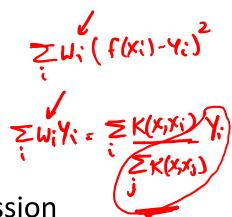
Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features $\Phi(X)$!

$$f(X) = \Phi(X)\beta$$

Kernel ridge regression vs. (local) Kernel Regression

$$\hat{f}_n(X) = \sum_i \hat{\alpha}_i K(X, X_i)$$



Kernel Ridge Regression

$$\hat{\boldsymbol{\alpha}} = (\mathbf{K} + \mathbf{X}\mathbf{I})^{-1}\mathbf{Y}$$
thaining points $K_{ij} = K(X_{ij}, X_{ij})$

Global fit

Interpret as weighted Nonlinear features

(Local) Kernel Regression

$$\hat{\alpha}_i = \frac{Y_i}{\sum_i K(X, X_i)} = (\mathbf{1}^\top \mathbf{K}_X)^{-1} \mathbf{Y}$$

Weights depend on test point X

Local fit

Interpret as weighted Least Squares

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss __
- Tackling multiple class
 - One against All
 - Multiclass SVMs
- Dual SVM formulation
 - Easier to solve when dimension high d > n
 - Kernel Trick
- Relationship between SVMs and logistic regression
- Kernelizing linear regression e.g. Kernel Ridge Regression