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Dual formulation only depends on
dot-products, not on w! «; -&Gjeye
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®(x) — High-dimensional feature space, but never need it explicitly as long
as we can compute the dot product fast using some Kernel K



Dot Product of Polynomials

d(x) = polynomials of degree exactly d
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Common Kernels

Using kernels, cost of
Polynomials of degree d computing dot products
. d depends on dimension of
K(u,v) = (u-v) original features x, and NOT

Polynomials of degree up to d fransformed fea’rureScﬁ(x)

K(u,v) = (u-v+ 1)

Gaussian/Radial kernels (polynomials of all orders — recall

series expansion of exp) ' e &b W) v)
lu —v|[7) &
K(u,v) =exp | —
(u,v) p ( 5
Sigmoid

K(u,v) =tanh(nu-v +v)
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Mercer Kernels

What functions are valid kernels that correspond to feature
vectors ¢(x)? K(xx) = ‘b‘x)' AR &
= ¢ x> ¢

= K(J(,K)

Answer: Mercer kernels K
e Kiscontinuous -

* Kis symmetric _ " wﬂ]
e Kis positive semi-definite, i.e. x'"Kx >0 for all x %" [%
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Ensures optimization is concave maximization
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Overfitting 2&}
S

* Huge feature space with kernels, what about
overfitting???

— Maximizing margin leads to sparse set of support
vectors =0

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting



What about classification time?

 For anew input x, if we need to represent ®(x), we are in trouble!

e

e Recall classifier: sign(w.®(x)+b)

*

w = ayd(x;) | WED
- 7 = = Z,Q Y; K(7<\')X>

b=yp — W.P(Xg) |wB<)

for any kK where C > a3, > 0
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e Using kernels we are cool!

K(u,v) = d(u) - (v)



SVMs with Kernels

e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors o

* At classification time, compute:

w-P(x) = Z oy K (%, %;)

b=yr— > oy K(xp,x;)

PEE—

for any k where C > a3 > 0

m sign (w - P(x) + b)



SVMs with Kernels

* |ris dataset, 2 vs 13, Linear Kernel




SVMs with Kernels

* Iris dataset, 1 vs 23, Polynomial Kernel degree 2
Polynomial ~| Do | 2 | | Separable Bound | 1|

No. ot Support Vectors: 30 (25.0%) &
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SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel
Gaussian RBF v\ Sicma / [] Separable Bound

No. of Support ectors: 55 (45 .5%)



SVMs with Kernels

* Iris dataset, 1 vs 23, Gaussian RBF kernel

Gaussian REF

<
No. of Suppart vectors: 41 (3¢ 2%) €=

— —
| Sioma [] Separable sound | | 1 |
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SVMs with Kernels

* Chessboard dataset, Gaussian RBF kernel

o of Suppart Vectors: 174 (58.0%) &
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SVMs with Kernels

* Chessboard dataset, Polynomial kernel

Eolynomial w| Dearse | 10 "] Separavle Beund | | 1

Mo. of Support Wectors: 147 (49.0%)
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USPS Handwritten digits
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L 1000 training and 1000 test instances

Results:
SVM on raw images ~97% accuracy
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SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
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SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels




Kernels in Logistic Regression

1
14+ e (WCE_(_)_(‘)‘FI?)

Vel

P(Y=1|z,w) =

S Y B
* Define weights in terms of features: W= :Z’(‘ Z’ PO
w=) a®(x;) <
i ¢ doen peints
1
1 4+ e (i i®(x)-2(x)+b)
[ —

R O cEnEs) M

Py =1|z,w) =

* Derive simple gradient descent rule on o

18



SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels




SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels

Solution sparse Often yes! Almost always no!




SVMs vs. Logistic Regression

SVMs Logistic
Regression

Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!
Semantics of “Margin” Real probabilities
output




Can we kernelize linear regression?

22



Linear (Ridge) regression
(Ridge) reg s

n d oK)
min 3 (% — Xi8)” + Al513 ST A
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A'A is a p x p matrix whose entries denote the (sample) v

correlation between the features (Ala).. - ‘X"‘{ " [Xa ;‘

- )(h("

NOT inner products between the data points — the inner product
matrix would be AAT which is n x n (also known as Gram matrix)3
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Ridge regression (dual) 70z
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Kernel ridge regression
fa(X) =) 6:K(X,X;) =Kxé
- i T xn  hxi
where & = (K +AI)"'Y ”
[ Kx (i) = ®(X) - ®(X;) Ve xn

K(i,j) = ®(X;) - ®(X;)

[

Work with kernels, never need to write out the high-dim vectors
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Ridge Regression with (implicit) nonlinear features ®(X) !

f(X) =@(X)B
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Kernel ridge regression vs.
(local) Kernel Regression

Fo(X) = 5 K . -
(%) ; X, %) ?:w‘;/‘l\' c 2K(ma'9
Kernel Ridge Regression (Local) Kernel Regression ,

= a— (K +%I) 1Y az— Z’K?X X)_(ITKi()_lY
a/ —— K(K{,K;) " —— :

Joaininy Pc')l\l'-( K; Weights depend on test point X
Global fit - Local fit 2
Interpret as N Interpret as /\/\ N
weighted Nonlinear weighted Least X K
features Squares
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What you need to know

Maximizing margin
Derivation of SVM formulation ~
Slack variables and hinge loss ~
Tackling multiple class
— One against All
— Multiclass SVMs -
Dual SVM formulation —
— Easier to solve when dimension high d > n
— Kernel Trick ~
Relationship between SVMs and logistic regression®
Kernelizing linear regression e.g. Kernel Ridge Regression®
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