Final exam info

- In-class exam
- Closed books/notes, closed electronics, 2 sided A4 hand-written (not printed) cheat sheet allowed (upload somewhere by some date)
- Videos on (contact instructor if there is issue by TOMORROW)
- Academic integrity violations will have severe consequences
- Multiple choice and Short answer
- Via Canvas
- Only 1 attempt allowed
- ~20 questions 75 mins (3-4 mins/question)
 - ~40% are hard (think open book), ~60% are easy
- Grading will be curved
- Ask questions via private Zoom chat

TOPICS (all, more emphasis since midterm)

- min p(w) -> L(w, 2)

 w max d(x)

 st. g(w) >> 0

 duality, KKT conditions

 (convexity at-)
- Basics Probability, Matrix/vector calculus, Optimization (convexity etc)
- Basic ML concepts training vs test data, overfitting, generalization, ML tasks, loss metrics, optimal classifier/regressor, decision boundaries, model selection (hold out, cross-validation, model complexity), theory (Haussler, Hoeffding, VC dimension)
- Unsupervised

- mixture models
- Distribution/Density estimation MLE, MAP, Histogram, Kernel density estimation
- Dimensionality reduction PCA V+ evec (XX) data centered
- Clustering K-means, Gaussian mixture models (GMM), EM algorithm, Hierarchical
- Supervised
 - Classification Naïve Bayes, Logistic Regression, Neural Networks, k-Nearest H(X)= 891 (Z d, K, (X) Neighbors, SVM, Kernel trick, Decision Trees, Boosting
 - Regression Linear Regression, Ridge, Lasso, Neural Networks, Kernel regression Kernelized pidge regression

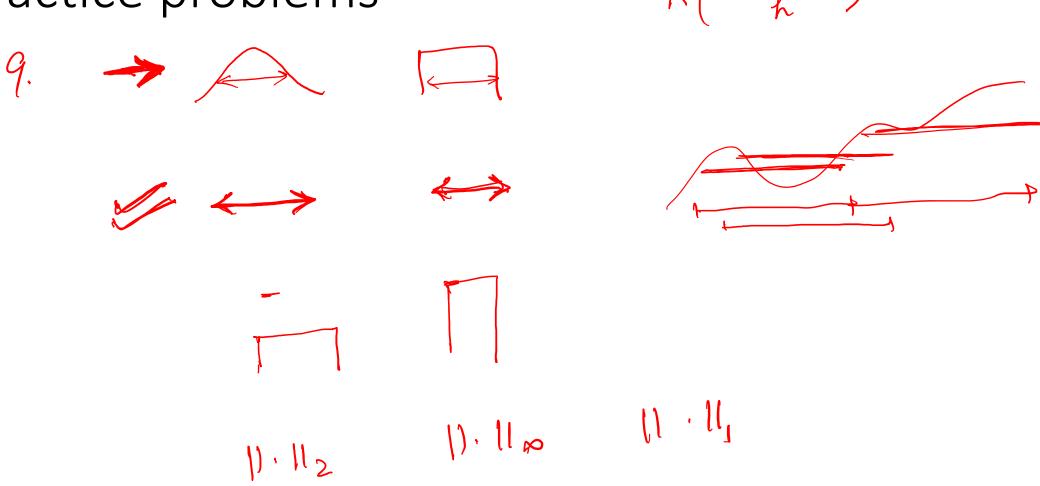
Comparison chart (classification)

Algorithm	Generative/ Discriminative	Assumptions	Decision boundary	Loss function Training
Naïve Bayes				0
Logistic Regression				9
Neural Networks				c
k-Nearest Neighbors				1
SVM		_	-	Oread prog.
Decision Tree	D			dynamic - CART (MDL. Inf
Boosting	?			Olead prog. int soin ID3, (4.5 dynamic - CART (MDL. Inf prog. Coordinate dec Lt, ht on ex

Comparison (regression)

Algorithm	Generative/ Discriminative	Assumptions	Decision boundary	Loss function	Training
Linear Regression					
Neural Networks					
Local Kernel regression					
Kernel Ridge Regression					

Unsupervised learning

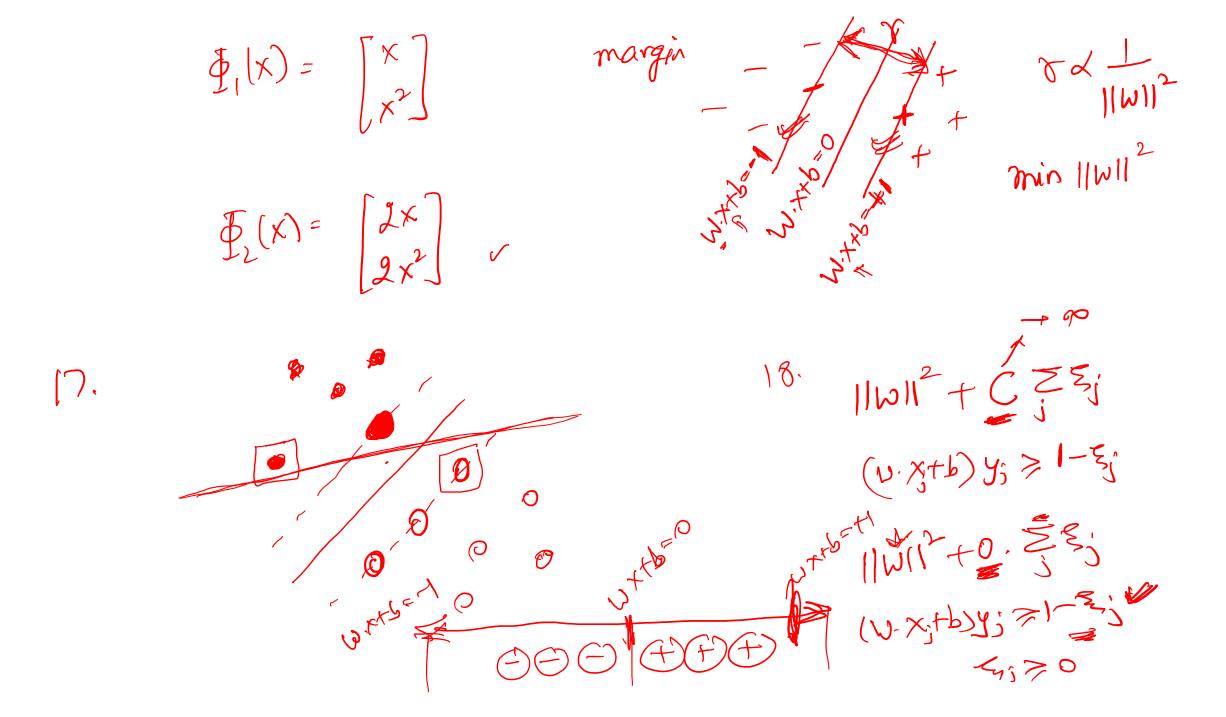

PCA

Clustering Partition (K-means, GrMH+EM)

Hierarchical

Distribution est.

Practice problems


$$p(x|Y=y) \approx N(\mu_{y}, \Xi_{y}) \qquad \Xi_{y} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$p(x|Y=y) = \int_{z=1}^{z} p(x_{j}|Y=y) \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$x_{2} = \begin{bmatrix} x_{1} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x_{2} & 0 \\ 0 & 0 \end{bmatrix}$$

$$x_{3} = \begin{bmatrix} x_{2} & 0 \\ 0 & 0 \end{bmatrix}$$

$$x_{4} = \begin{bmatrix} x_{2} & 0 \\ 0 & 0 \end{bmatrix}$$

12· 2 No!!!!