Decision Trees

Aarti Singh

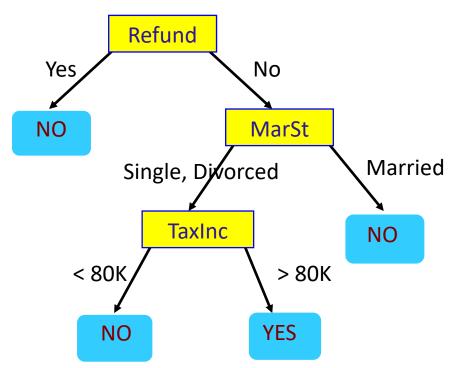
Machine Learning 10-315 Nov 2, 2020

Decision Trees

• Start with discrete features, then discuss continuous

Representation

• What does a decision tree represent

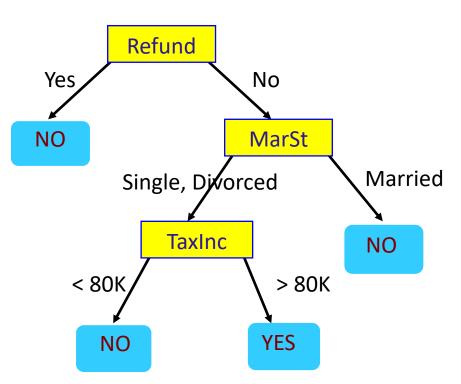


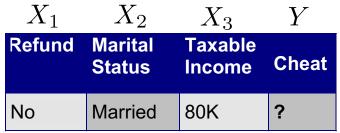
X_1	X_2	X_3	Y
Refund	Marital Status	Taxable Income	Cheat

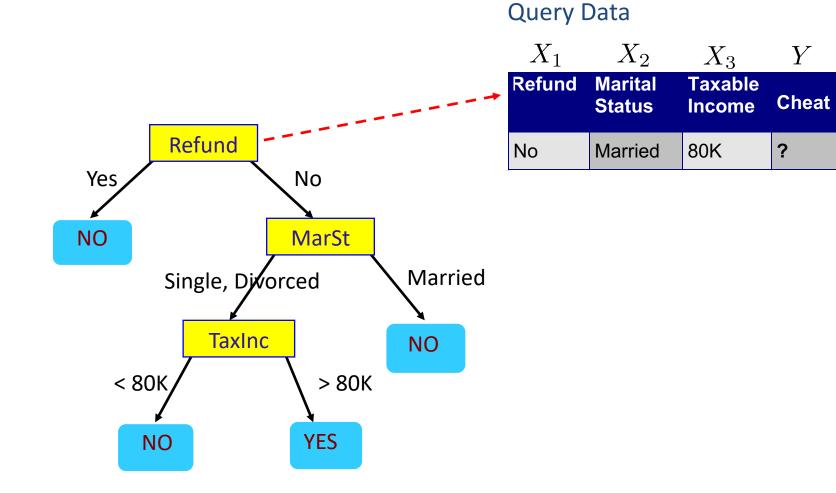
- Each internal node: test one feature X_i
- Each branch from a node: selects some value for X_i
- Each leaf node: prediction for Y

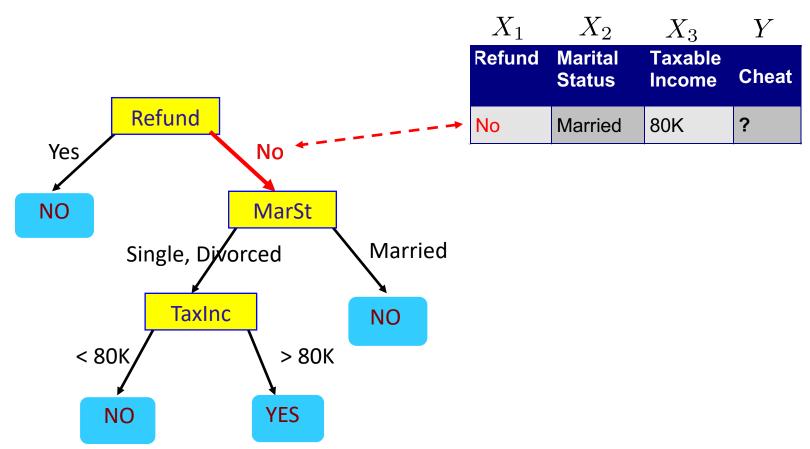
Prediction

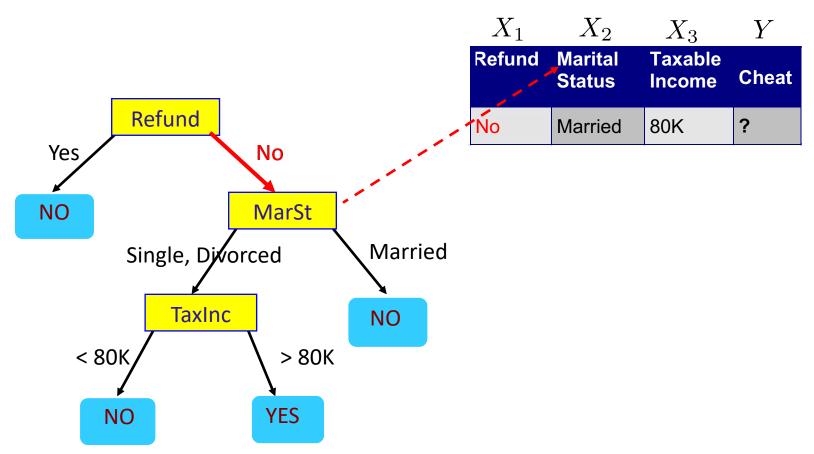
• Given a decision tree, how do we assign label to a test point

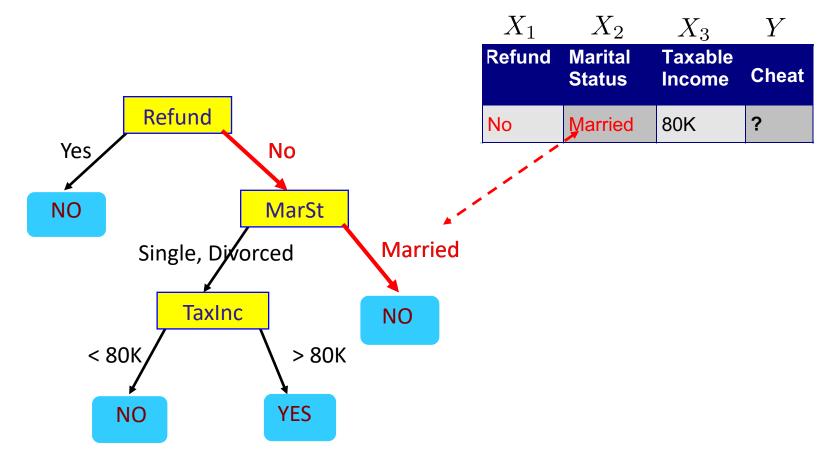


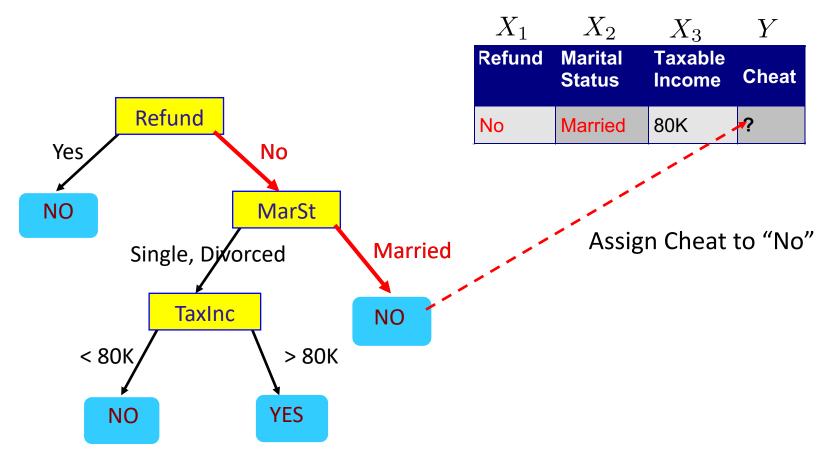












So far...

- What does a decision tree represent
- Given a decision tree, how do we assign label to a test point

Discriminative or Generative?

Now ...

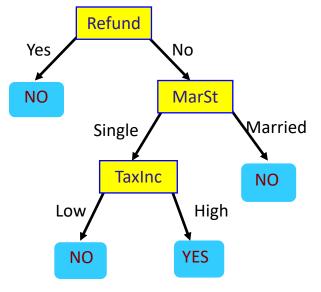
How do we learn a decision tree from training data

How to learn a decision tree

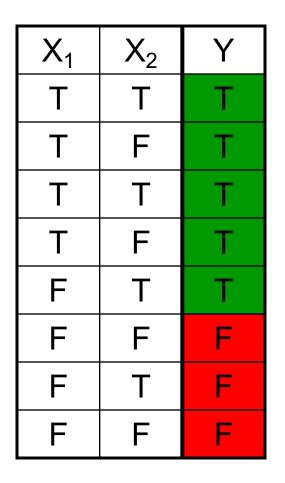
• Top-down induction [ID3]

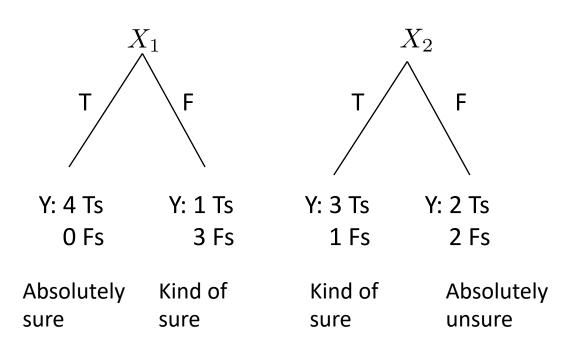
Main loop:

- 1. $X \leftarrow$ the "best" decision feature for next *node*
- 2. Assign X as decision feature for *node*
- 3. For each value of X_i create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node



Which feature is best?





Good split if we are more certain about classification after split – Uniform distribution of labels is bad

Which feature is best?

Pick the attribute/feature which yields maximum information gain:

$$\arg\max_{i} I(Y, X_{i}) = \arg\max_{i} [H(Y) - H(Y|X_{i})]$$

H(Y) – entropy of Y $H(Y|X_i)$ – conditional entropy of Y

Andrew Moore's Entropy in a Nutshell

High Entropy

Low Entropy

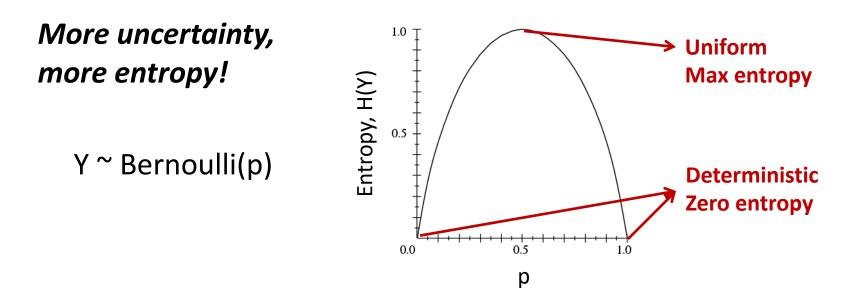
..the values (locations of soup) sampled entirely from within the soup bowl

..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

Entropy

• Entropy of a random variable Y

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$



Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Information Gain

- Advantage of attribute = decrease in uncertainty
 - Entropy of Y before split

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$

- Entropy of Y after splitting based on X_i
 - Weight by probability of following each branch

$$H(Y \mid X_i) = \sum_{x} P(X_i = x) H(Y \mid X_i = x)$$

= $-\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$

• Information gain is difference

$$I(Y, X_i) = H(Y) - H(Y \mid X_i)$$

Max Information gain = min conditional entropy

Which feature is best to split?

Pick the attribute/feature which yields maximum information gain:

$$\arg\max_{i} I(Y, X_{i}) = \arg\max_{i} [H(Y) - H(Y|X_{i})]$$
$$= \arg\min_{i} H(Y|X_{i})$$

Entropy of Y
$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$

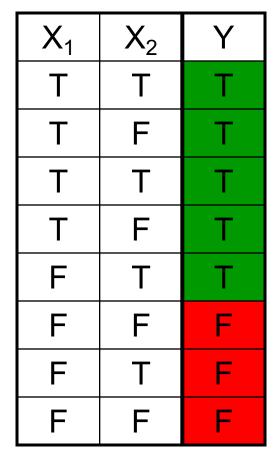
Conditional entropy of Y

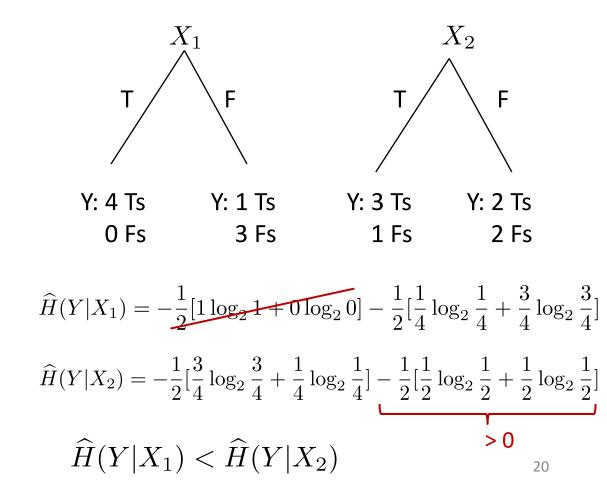
$$\underline{H(Y \mid X_i)} = \sum_{x} P(X_i = x) H(Y \mid X_i = x)$$

Feature which yields maximum reduction in entropy (uncertainty) provides maximum information about Y

Information Gain

$$H(Y \mid X_i) = -\sum_{x} P(X_i = x) \sum_{y} P(Y = y \mid X_i = x) \log_2 P(Y = y \mid X_i = x)$$



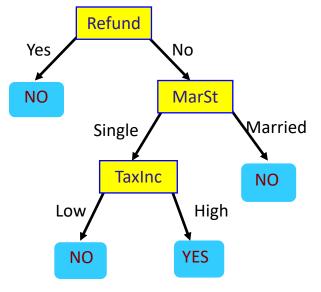


How to learn a decision tree

• Top-down induction [ID3]

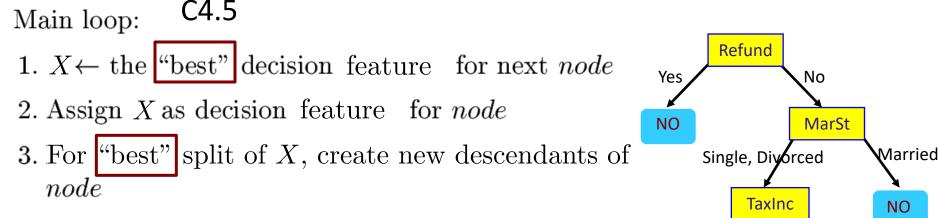
Main loop:

- 1. $X \leftarrow$ the "best" decision feature for next *node*
- 2. Assign X as decision feature for *node*
- 3. For each value of X_i create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node



How to learn a decision tree

• Top-down induction [ID3, C4.5, C5, ...]



- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- 6. Prune back tree to reduce overfitting
- 7. Assign majority label to the leaf node

> 80K

YES

< 80K

NO

Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

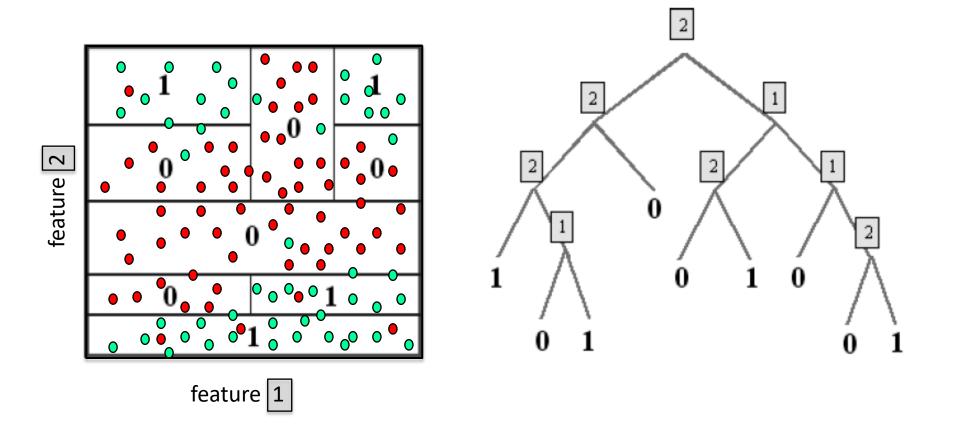
What threshold to pick?

Search for best one as per information gain. Infinitely many??

Don't need to search over more than ~ n (number of training data), e.g. say X_1 takes values $x_1^{(1)}$, $x_1^{(2)}$, ..., $x_1^{(n)}$ in the training set. Then possible thresholds are

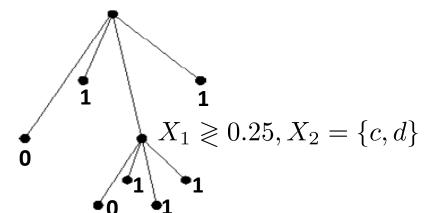
$$[x_1^{(1)} + x_1^{(2)}]/2, [x_1^{(2)} + x_1^{(3)}]/2, ..., [x_1^{(n-1)} + x_1^{(n)}]/2$$

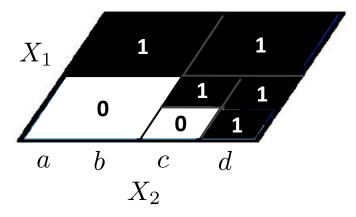
Dyadic decision trees (split on mid-points of features)



Decision Tree more generally...

 $X_1 \ge 0.5, X_2 = \{a, b\} \text{or}\{c, d\}$

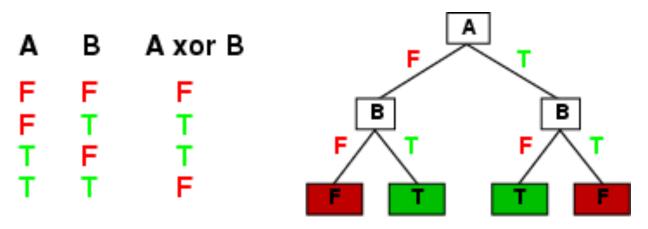




- Features can be discrete, continuous or categorical
- Each internal node: test some set of features {X_i}
- Each branch from a node: selects a set of value for {X_i}
- Each leaf node: prediction for Y

Expressiveness of Decision Trees

- Decision trees in general (without pruning) can express any function of the input features.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:



- There is a decision tree which perfectly classifies a training set with one path to leaf for each example overfitting
- But it won't generalize well to new examples prefer to find more compact decision trees

When to Stop?

- Many strategies for picking simpler trees:
 - Pre-pruning
 - Fixed depth (e.g. ID3)
 - Fixed number of leaves
 - Post-pruning
 - Chi-square test
 - Convert decision tree to a set of rules
 - Eliminate variable values in rules which are independent of label (using chi-square test for independence)
 - Simplify rule set by eliminating unnecessary rules
 - Information Criteria: MDL(Minimum Description Length)

Marcied

NO

Refund

Single, Divorced

Yes

No

MarSt

Information Criteria

• Penalize complex models by introducing cost

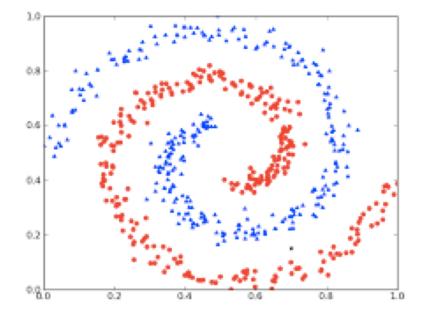
$$\widehat{f} = \arg \min_{T} \left\{ \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(\widehat{f}_{T}(X_{i}), Y_{i}) + \operatorname{pen}(T) \right\}$$

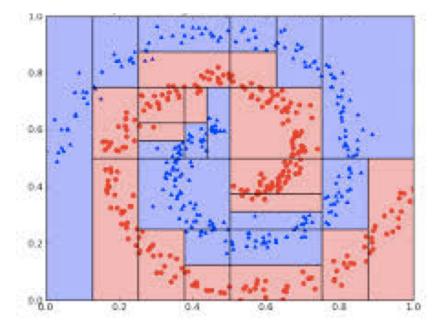
$$\log \text{ likelihood } \operatorname{cost}$$

$$\log(\widehat{f}_{T}(X_{i}), Y_{i}) = (\widehat{f}_{T}(X_{i}) - Y_{i})^{2} \text{ regression } \operatorname{classification}$$

pen $(T) \propto |T|$ penalize trees with more leaves CART – optimization can be solved by dynamic programming

Example of 2-feature decision tree classifier



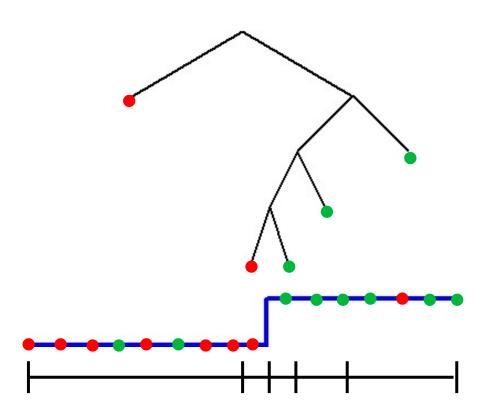


cs.uchicago.edu

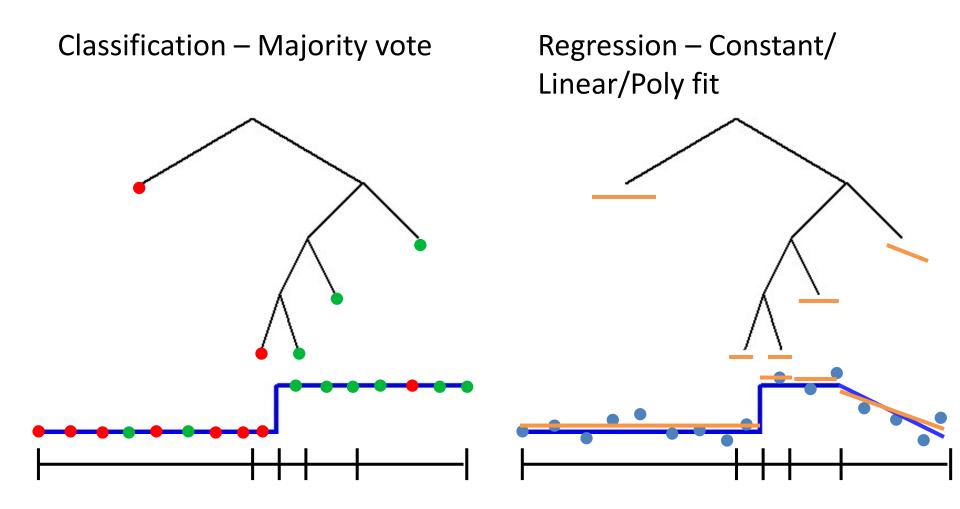
How to assign label to each leaf

Classification – Majority vote

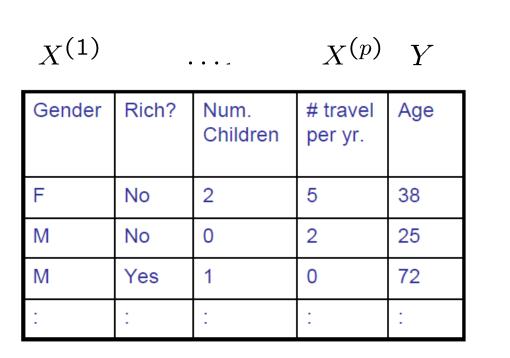
Regression – ?

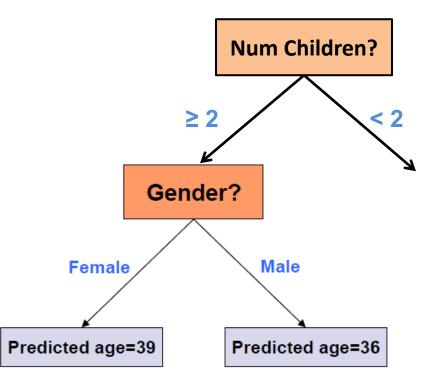


How to assign label to each leaf



Regression trees





Average (fit a constant) using training data at the leaves

What you should know

- Decision trees are one of the most popular data mining tools
 - Simplicity of design
 - Interpretability
 - Ease of implementation
 - Good performance in practice (for small dimensions)
- Information gain to select attributes (ID3, C4.5,...)
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Pre-Pruning: Fixed depth/Fixed number of leaves
 - Post-Pruning: Chi-square test of independence
 - Complexity Penalized/MDL model selection
- Can be used for classification, regression and density estimation too