Support Vector Machines (SVMs)

Aarti Singh

Machine Learning 10-315 Sept 25, 2019

Discriminative Classifiers

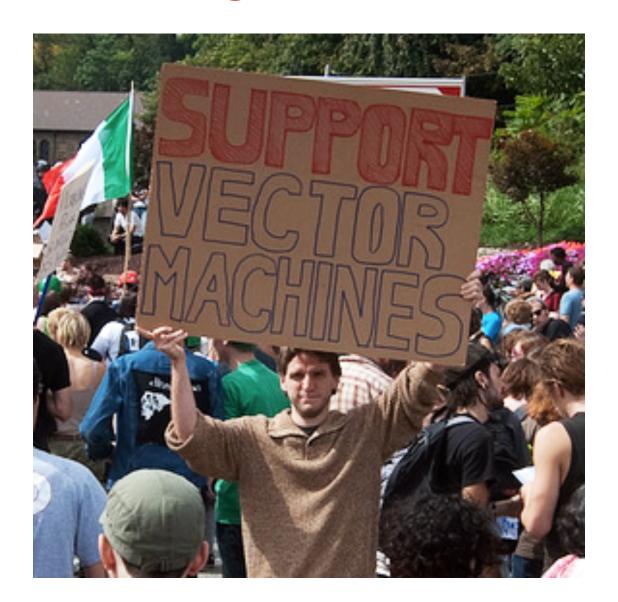
Optimal Classifier:

$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$
$$= \arg \max_{Y=y} P(X=x|Y=y)P(Y=y)$$

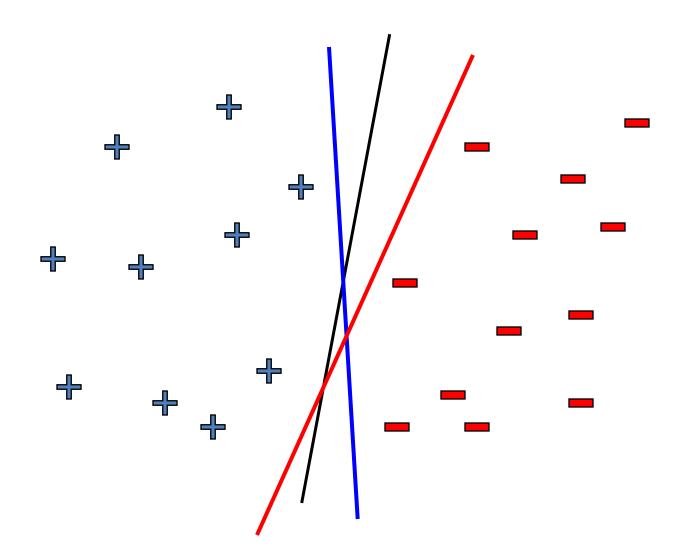
Why not learn P(Y|X) directly? Or better yet, why not learn the decision boundary directly?

- Assume some functional form for P(Y|X) (e.g. Logistic Regression) or for the decision boundary (e.g. SVMs)
- Estimate parameters of functional form directly from training data

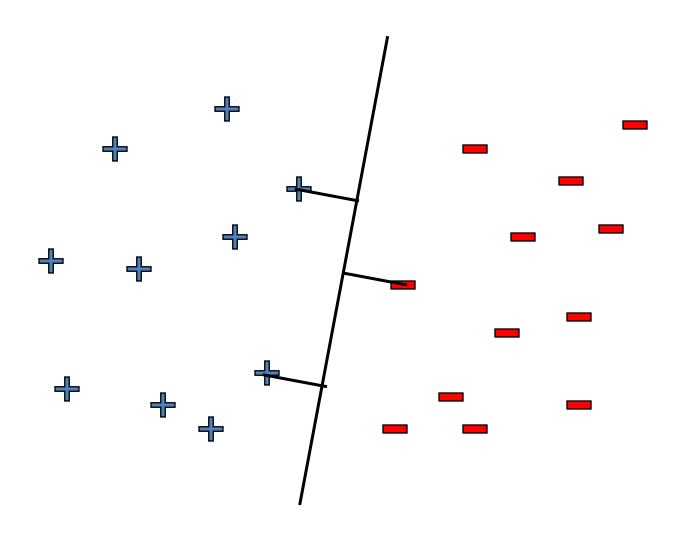
At Pittsburgh G-20 summit ...



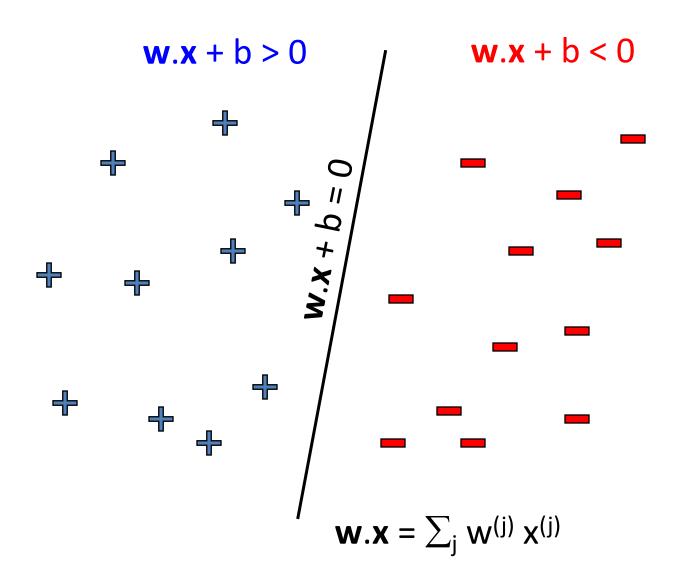
Linear classifiers – which line is better?



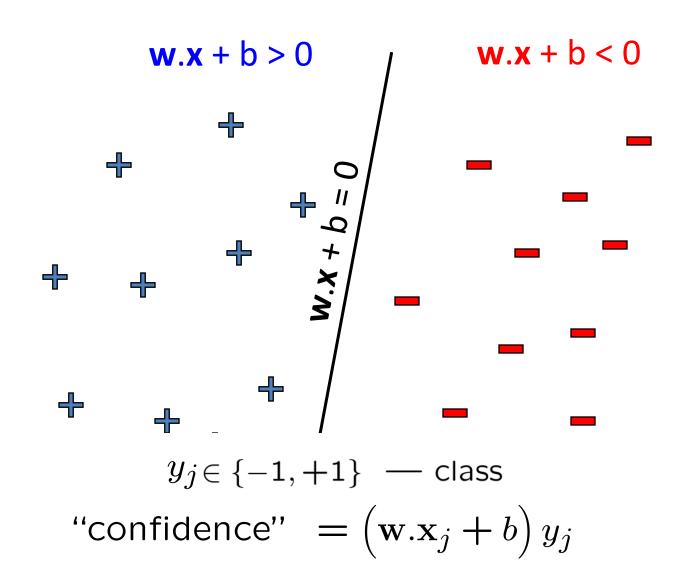
Pick the one with the largest margin!

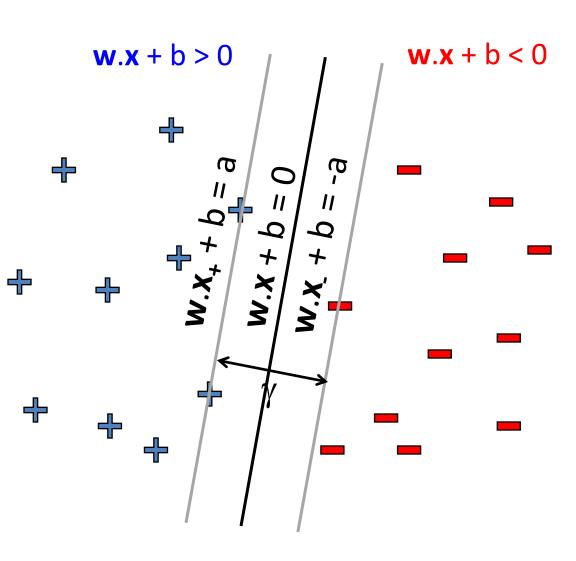


Parameterizing the decision boundary



Parameterizing the decision boundary



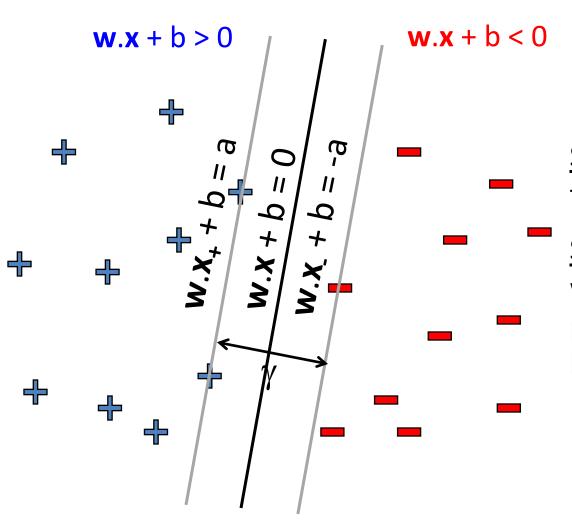


Distance of closest examples from the line/hyperplane

margin =
$$\gamma$$
 = 2a/ $\|$ w $\|$

Step 1: **w** is perpendicular to lines since for any x_1 , x_2 on line **w**.($\mathbf{x}_1 - \mathbf{x}_2$) = 0

$$0 \neq x_1$$



margin =
$$\gamma$$
 = 2a/ $\|$ w $\|$

Step1: w is perpendicular to lines

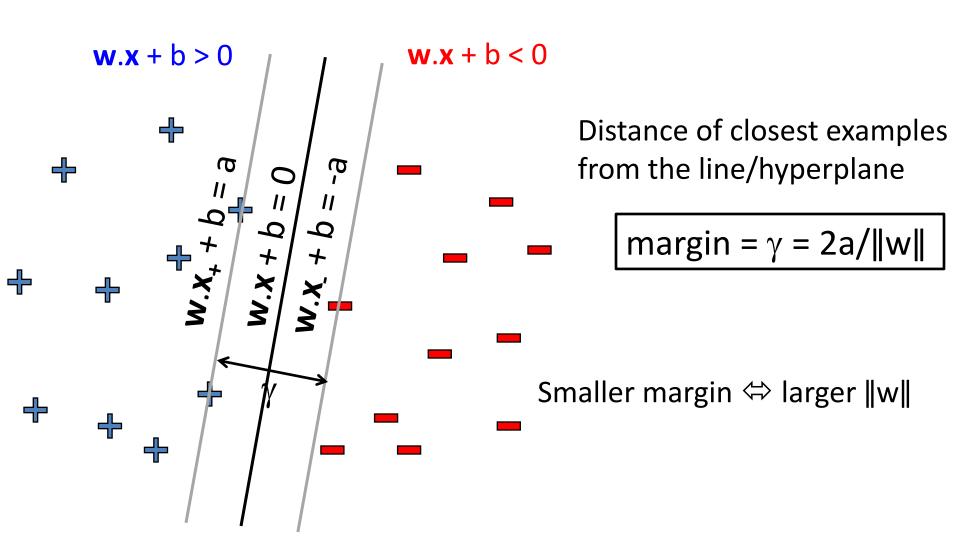
Step 2: Take a point x on w.x + b = -a and move to point x_+ that is γ away on line w.x+b = a

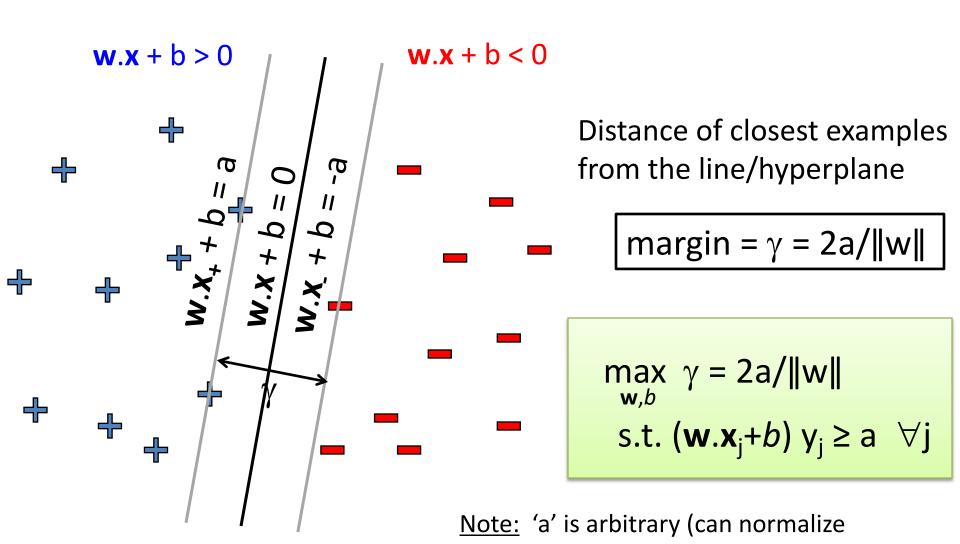
$$\mathbf{x}_{+} = \mathbf{x}_{-} + \gamma \mathbf{w} / \| \mathbf{w} \|$$

$$\mathbf{w}.\mathbf{x}_{+} = \mathbf{w}.\mathbf{x}_{-} + \gamma \mathbf{w}. \mathbf{w} / \| \mathbf{w} \|$$

$$\mathbf{a}-\mathbf{b} = -\mathbf{a}-\mathbf{b} + \gamma \| \mathbf{w} \|$$

$$2\mathbf{a} = \gamma \| \mathbf{w} \|$$





equations by a)

11

Support Vector Machines

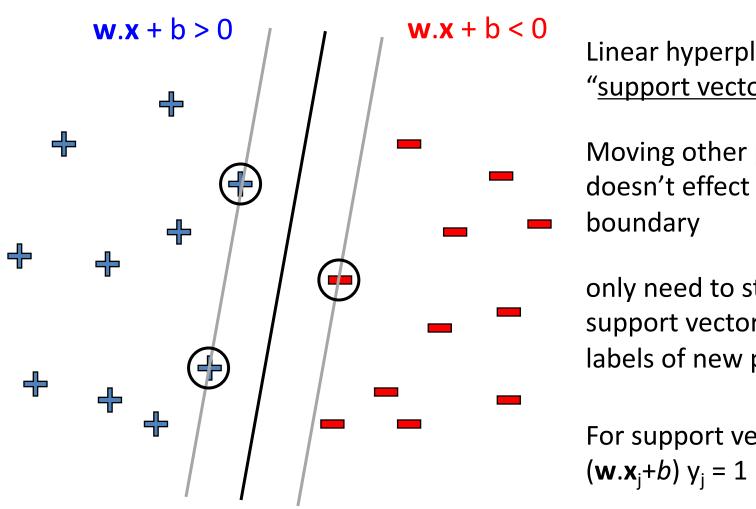


$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w}$$
s.t. $(\mathbf{w}.\mathbf{x}_j+b) \mathbf{y}_j \ge 1 \quad \forall j$

Solve efficiently by quadratic programming (QP)

- Quadratic objective, linear constraints
- Well-studied solution algorithms

Support Vectors



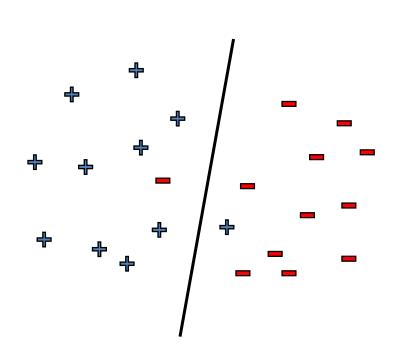
Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision

only need to store the support vectors to predict labels of new points

For support vectors

What if data is not linearly separable?



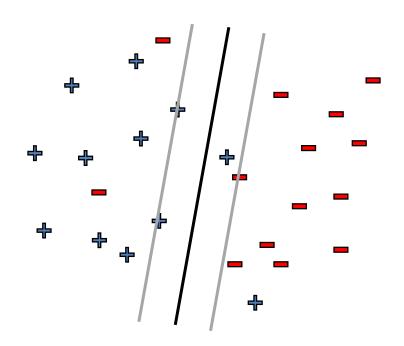
Use features of features of features of features....

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification



Smaller margin ⇔ larger ||w||

min
$$\mathbf{w}.\mathbf{w} + C$$
 #mistakes s.t. $(\mathbf{w}.\mathbf{x}_j+b)$ $y_j \ge 1 \quad \forall j$

Maximize margin and minimize # mistakes on training data

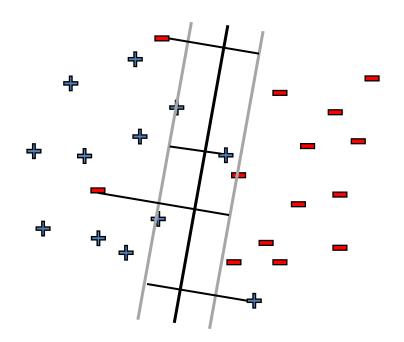
C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is still not linearly separable?

Allow "error" in classification



Soft margin approach

$$\min_{\mathbf{w},b,\{\xi_{j}\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$

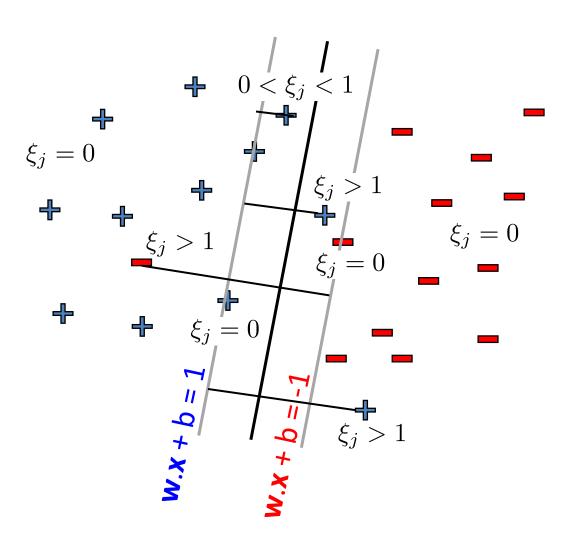
$$s.t. (\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$$

$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Soft-margin SVM



Soften the constraints:

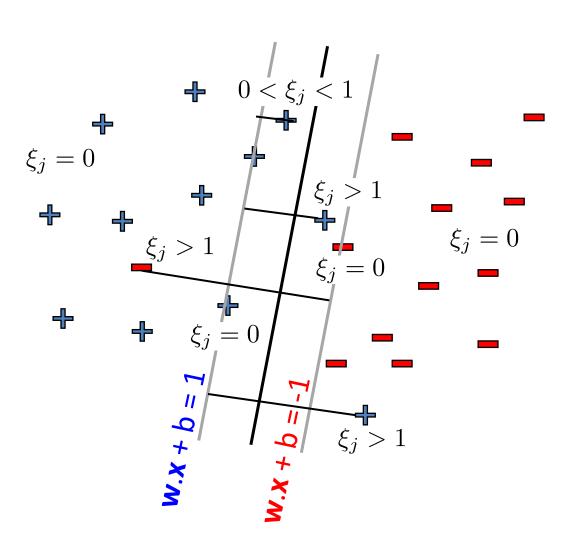
$$(\mathbf{w}.\mathbf{x}_{j}+b) \mathbf{y}_{j} \geq 1-\xi_{j} \quad \forall \mathbf{j}$$
$$\xi_{i} \geq 0 \quad \forall \mathbf{j}$$

Penalty for misclassifying:

$$C \xi_i$$

How do we recover hard margin SVM?

Slack variables – Hinge loss

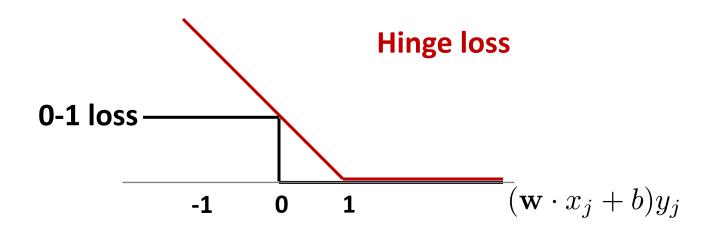


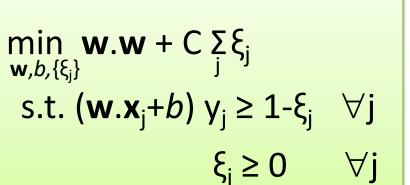
Notice that

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

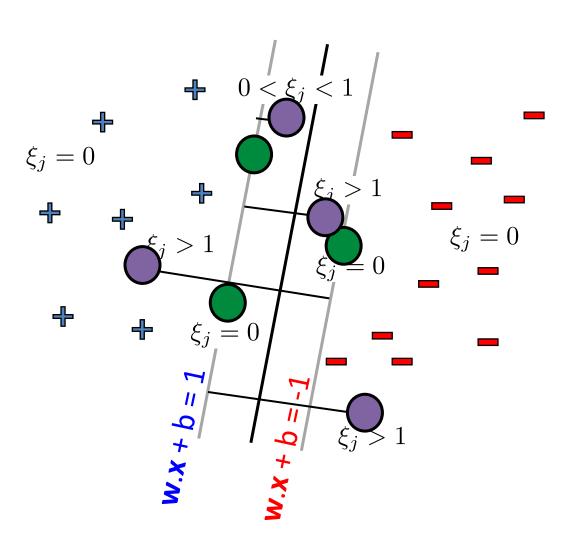




Regularized hinge loss

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} (1-(\mathbf{w}.x_j+b)y_j)_+$$

Support Vectors



Margin support vectors

 $\xi_j = 0$, $(\mathbf{w}.\mathbf{x}_j + b)$ $y_j = 1$ (don't contribute to objective but enforce constraints on solution)

Correctly classified but on margin

Non-margin support vectors

 $\xi_j > 0$ (contribute to both objective and constraints)

 $1 > \xi_j > 0$ Correctly classified but inside margin $\xi_i > 1$ Incorrectly classified 20

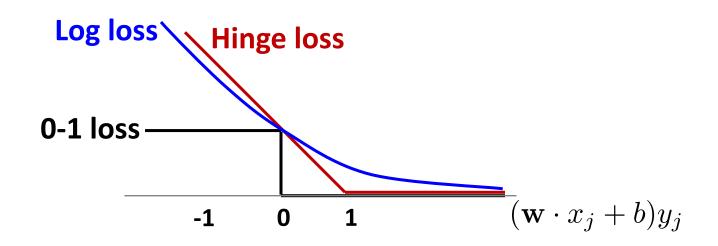
SVM vs. Logistic Regression

SVM: **Hinge loss**

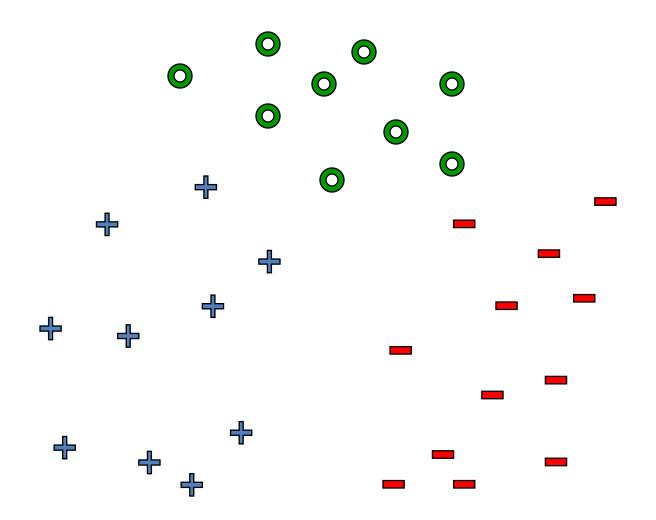
$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

<u>Logistic Regression</u>: <u>Log loss</u> (-ve log conditional likelihood)

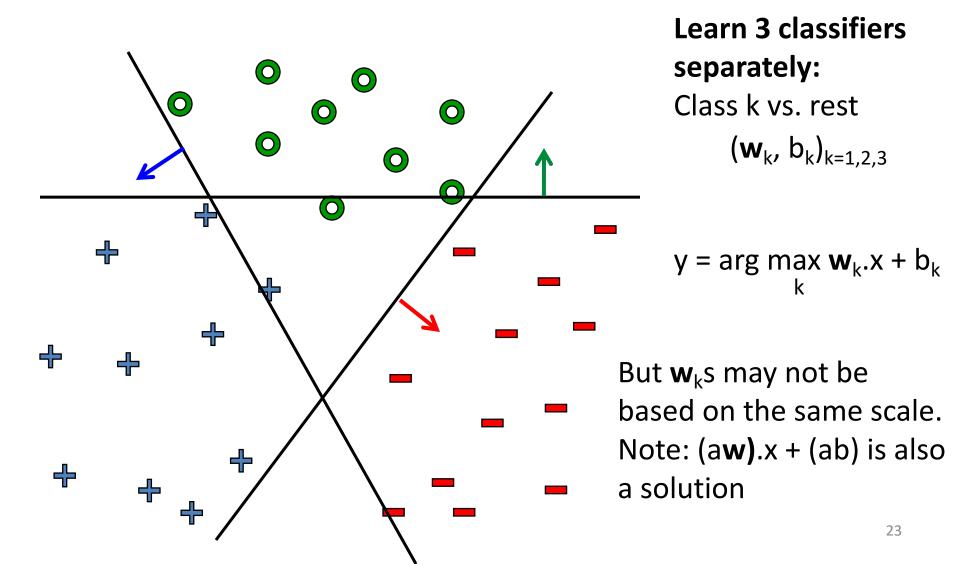
$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$



What about multiple classes?



One vs. rest



Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

