Logistic Regression

Aarti Singh

Machine Learning 10-315 Sept 11, 2019

Discriminative Classifiers

Optimal Classifier:

$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$
$$= \arg \max_{Y=y} P(X=x|Y=y)P(Y=y)$$

Why not learn P(Y|X) directly? Or better yet, why not learn the decision boundary directly?

- Assume some functional form for P(Y|X) or for the decision boundary
- Estimate parameters of functional form directly from training data

Today we will see one such classifier – Logistic Regression

Logistic Regression

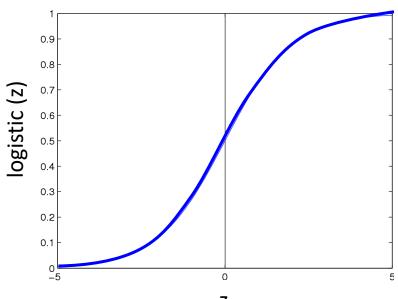
Not really regression

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Logistic function applied to a linear function of the data

Logistic function $\frac{1}{1+exp(-z)}$



Features can be discrete or continuous!

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

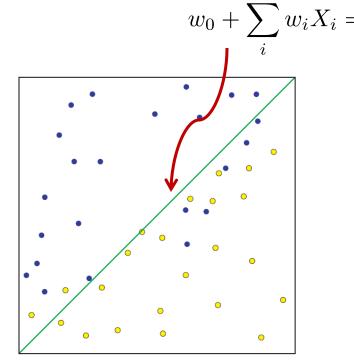
$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Decision boundary: Note - Labels are 0,1

$$P(Y = 0|X) \overset{0}{\underset{1}{\gtrless}} P(Y = 1|X)$$

$$w_0 + \sum_i w_i X_i \overset{1}{\underset{0}{\gtrless}} 0$$

(Linear Decision Boundary)



Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow P(Y = 1|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow \frac{P(Y=1|X)}{P(Y=0|X)} = \exp(w_0 + \sum_i w_i X_i) \stackrel{1}{\gtrless} 1$$

$$\Rightarrow w_0 + \sum_i w_i X_i \overset{1}{\underset{0}{\gtrless}} 0$$

Training Logistic Regression

How to learn the parameters w_0 , w_1 , ... w_d ? (d features)

Training Data
$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$
 $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum Likelihood Estimates

$$\widehat{\mathbf{w}}_{MLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(X^{(j)}, Y^{(j)} \mid \mathbf{w})$$

But there is a problem ...

Don't have a model for P(X) or P(X|Y) – only for P(Y|X)

Training Logistic Regression

How to learn the parameters w_0 , w_1 , ... w_d ? (d features)

Training Data
$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$
 $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum (Conditional) Likelihood Estimates

$$\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(Y^{(j)} \mid X^{(j)}, \mathbf{w})$$

Discriminative philosophy – Don't waste effort learning P(X), focus on P(Y|X) – that's all that matters for classification!

Expressing Conditional log Likelihood

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

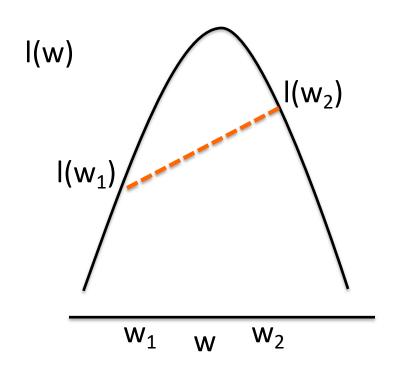
$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} \left[y^{j} (w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j})) \right]$$

Bad news: no closed-form solution to maximize I(w)

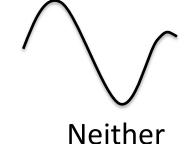
Good news: *l*(**w**) is concave function of **w**! concave functions easy to maximize (unique maximum)

Concave function



A function I(w) is called **concave** if the line joining two points $f(w_1), f(w_2)$ on the function does not go above the function on the interval $[w_1, w_2]$

(Strictly) Concave functions have a unique maximum!



Both Concave & Convex

Optimizing concave function

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function can be reached by

Gradient Ascent Algorithm

 Initialize: Pick w at random

Gradient:

$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_{\mathbf{d}}}\right]'$$

Update rule: Learning rate, $\eta>0$

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left. \frac{\partial l(\mathbf{w})}{\partial w_i} \right|_t$$

Gradient Ascent for Logistic Regression

Gradient ascent rule for w_0 :

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \left. \frac{\partial l(\mathbf{w})}{\partial w_0} \right|_t$$

$$l(\mathbf{w}) = \sum_{j} \left[y^{j}(w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j})) \right]$$

$$\frac{\partial l(\mathbf{w})}{\partial w_0} = \sum_j \left[y^j - \frac{1}{1 + exp(w_0 + \sum_i^d w_i x_i^j)} \cdot exp(w_0 + \sum_i^d w_i x_i^j) \right]$$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change $< \varepsilon$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For i=1,...,d,

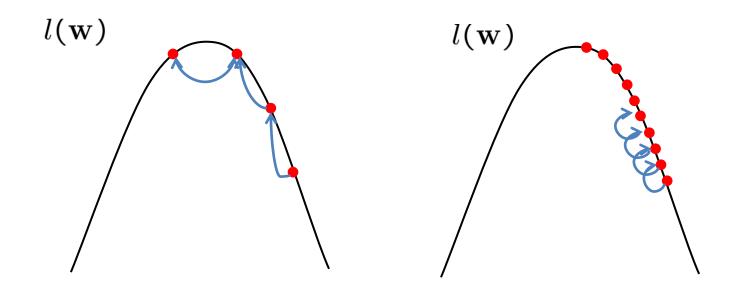
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

Predict what current weight thinks label Y should be

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Effect of step-size η



Large η => Fast convergence but larger residual error Also possible oscillations

Small η => Slow convergence but small residual error

That's all M(C)LE. How about M(C)AP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- Define priors on w
 - Common assumption: Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Zero-mean Gaussian prior

• M(C)AP estimate
$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \sum_{j=1}^n \ln P(y^j \mid \mathbf{x}^j, \mathbf{w}) - \sum_{i=1}^d \frac{w_i^2}{2\kappa^2}$$

Still concave objective!

M(C)AP – Gradient

Gradient

$$\frac{\partial}{\partial w_i} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Zero-mean Gaussian prior

$$\frac{\partial}{\partial w_i} \ln p(\mathbf{w}) + \frac{\partial}{\partial w_i} \ln \left[\prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$
Same as before
$$\propto \frac{-w_i}{\kappa^2}$$
Extra term Penalizes large weights

M(C)LE vs. M(C)AP

Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - P(Y = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\frac{1}{\kappa^2} w_i^{(t)} + \sum_j x_i^j [y^j - P(Y = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Logistic Regression for more than 2 classes

• Logistic regression in more general case, where $Y \in \{y_1,...,y_K\}$

for k < K $P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{d} w_{ki} X_i)}{1 + \sum_{i=1}^{K-1} \exp(w_{i0} + \sum_{i=1}^{d} w_{ii} X_i)}$

for k=K (normalization, so no weights for this class)

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}$$

Predict
$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$

Is the decision boundary still linear?

HW1

Comparison with Gaussian Naïve Bayes

Gaussian Naïve Bayes vs. Logistic Regression

Set of Gaussian
Naïve Bayes parameters
(feature variance
independent of class label)

Set of Logistic Regression parameters

- Representation equivalence (both yield linear decision boundaries)
 - But only in a special case!!! (GNB with class-independent variances)
 - LR makes no assumptions about P(X|Y) in learning!!!
 - Optimize different functions (MLE/MCLE) or (MAP/MCAP)! Obtain different solutions

Gaussian Naïve Bayes vs. Logistic Regression [Ng & Jordan, NIPS 2001]

Given infinite data (asymptotically),

If conditional independence assumption holds, Discriminative LR and generative NB perform similar.

$$\epsilon_{
m Dis,\infty} \sim \epsilon_{
m Gen,\infty}$$

If conditional independence assumption does NOT holds, Discriminative LR outperforms generative NB.

$$\epsilon_{\mathrm{Dis},\infty} < \epsilon_{\mathrm{Gen},\infty}$$

Gaussian Naïve Bayes vs. Logistic Regression

Consider Y boolean, X_i continuous, X=<X₁ ... X_d>

Number of parameters:

- NB: 4d +1 θ , $(\mu_{1,y}, \mu_{2,y}, ..., \mu_{d,y})$, $(\sigma^2_{1,y}, \sigma^2_{2,y}, ..., \sigma^2_{d,y})$ y = 0,1 3d +1 if class independent variances
- LR: d+1 $w_0, w_1, ..., w_d$

Estimation method:

- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

Gaussian Naïve Bayes vs. Logistic Regression

Given finite data (n data points, d features),

[Ng & Jordan, NIPS 2001]

$$\epsilon_{\mathrm{Dis},n} \le \epsilon_{\mathrm{Dis},\infty} + O\left(\sqrt{\frac{d}{n}}\right)$$

$$\epsilon_{\mathrm{Gen},n} \le \epsilon_{\mathrm{Gen},\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)$$

Naïve Bayes (generative) requires $n \sim \log d$ to converge to its asymptotic error, whereas Logistic regression (discriminative) requires $n \sim d$.

Why? "Independent class conditional densities"

* parameter estimates not coupled – each parameter is learnt independently, not jointly, from training data.

Naïve Bayes vs Logistic Regression

<u>Verdict</u>

Both learn a linear boundary (assuming class-ind feature variance)

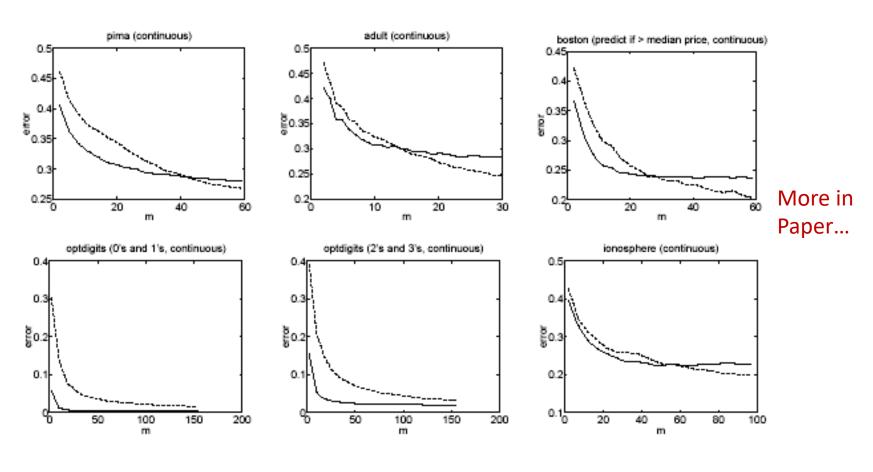
Naïve Bayes makes more restrictive assumptions and has higher asymptotic error,

BUT

converges faster to its less accurate asymptotic error.

Experimental Comparison (Ng-Jordan'01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features



— Naïve Bayes

---- Logistic Regression

What you should know

- LR is a linear classifier
- LR optimized by maximizing conditional likelihood or conditional posterior
 - no closed-form solution
 - concave ! global optimum with gradient ascent
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class! assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit