Learning Theory

Aarti Singh

Machine Learning 10-315 Nov 25, 2019

Slides courtesy: Carlos Guestrin

Summary of PAC bounds for finite model class

With probability $\geq 1-\delta$,

1) For all $h \in H$ s.t. $error_{train}(h) = 0$, $error_{true}(h) \le \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{\delta}$

Haussler's bound

2) For all $h \in H$ $|error_{true}(h) - error_{train}(h)| \le \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$

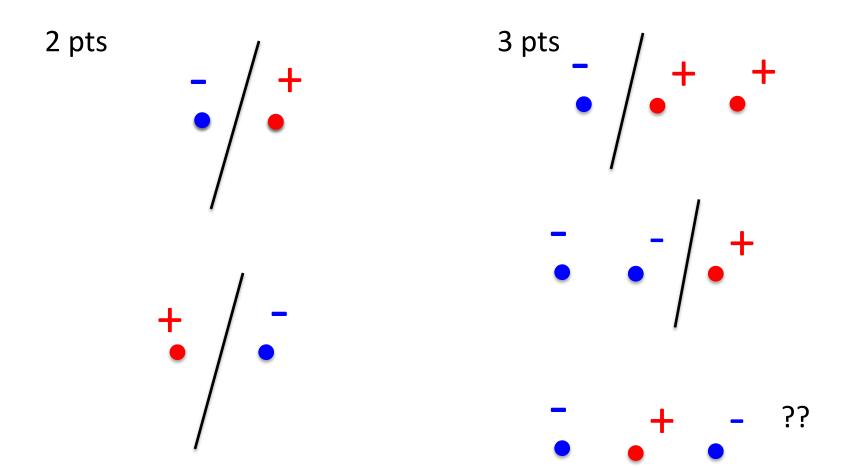
Hoeffding's bound

What about continuous hypothesis spaces?

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{2}{\delta}}{2m}}$$

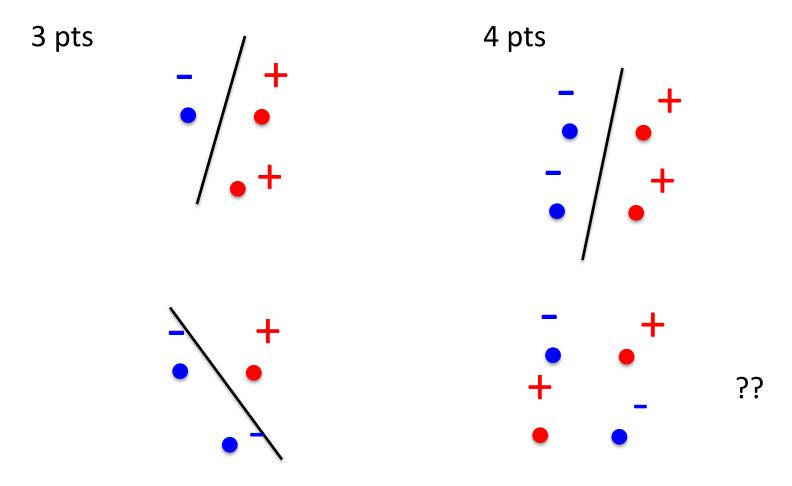
- Continuous model class (e.g. linear classifiers):
 - $|H| = \infty$
 - Infinite gap???
- As with decision trees, complexity of model class only depends on maximum number of points that can be classified exactly (and not necessarily its size)!

How many points can a linear boundary classify exactly? (1-D)



4

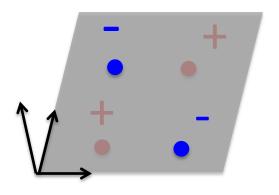
How many points can a linear boundary classify exactly? (2-D)



5

How many points can a linear boundary classify exactly? (d-D)

d+1 pts



How many parameters in linear Classifier in d-Dimensions?

$$w_0 + \sum_{i=1}^d w_i x_i$$

d+1

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

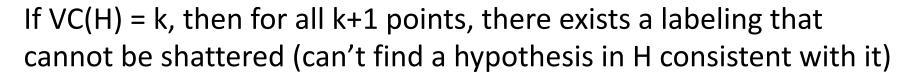
$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$$

$$\operatorname{Instead of ln[H]}$$

VC dimension

<u>Definition</u>: VC dimension of a hypothesis space H is the maximum number of points such that there exists a hypothesis in H that is consistent with (can correctly classify) any labeling of the points.

- You pick set of points
- Adversary assigns labels
- You find a hypothesis in H consistent with the labels



PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

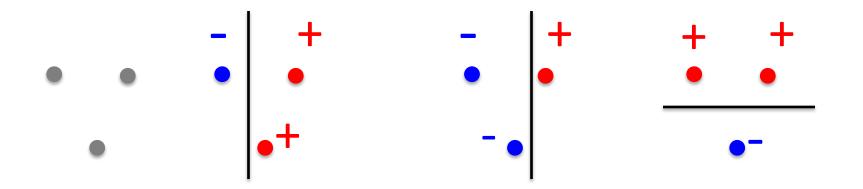
w.p. ≥ 1- δ error _{true} (h) \leq erro	$\operatorname{r}_{train}(h) + 8\sqrt{{1}}}$	$\frac{VC(H)\left(\ln\frac{m}{VC(H)}+1\right)}{ $	$+ \ln \frac{8}{\delta}$
linear classifiers	↓ ↓	↓	
2D	large	small	
10,000 D	small	large	9

Examples of VC dimension

- Linear classifiers:
 - -VC(H) = d+1, for d features plus constant term

Another VC dim. example - What can we shatter?

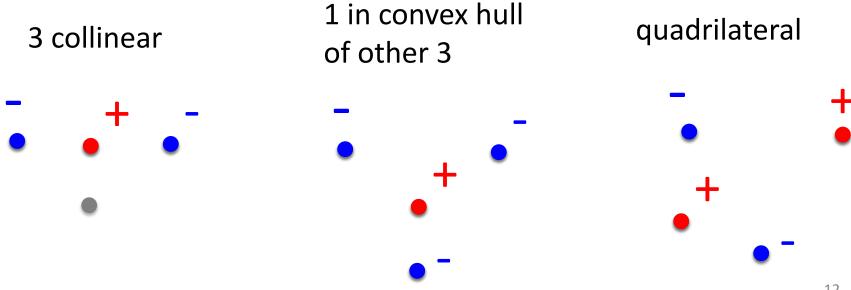
What's the VC dim. of decision stumps in 2D?



$$VC(H) \ge 3$$

Another VC dim. example - What can't we shatter?

 What's the VC dim. of decision stumps in 2D? If VC(H) = 3, then for all placements of 4 pts, there exists a labeling that can't be shattered



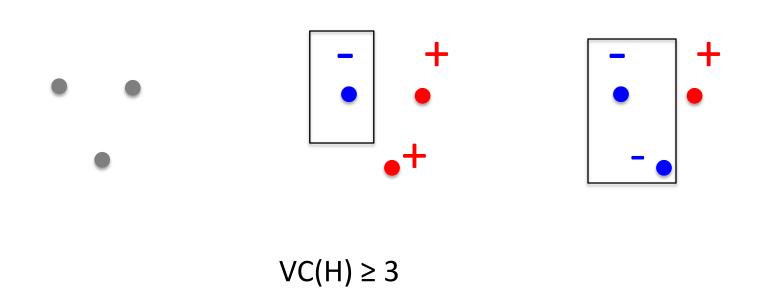
Examples of VC dimension

- Linear classifiers:
 - -VC(H) = d+1, for d features plus constant term

• Decision stumps: VC(H) = d+1 (3 if d=2)

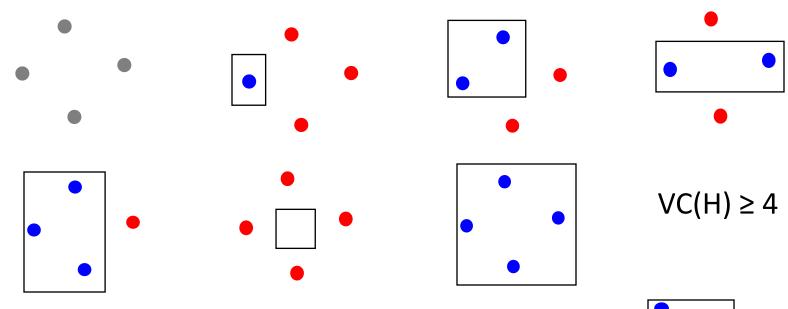
Another VC dim. example - What can we shatter?

 What's the VC dim. of axis parallel rectangles in 2D? sign(1- 2*1_{x ∈ rectangle})



Another VC dim. example - What can't we shatter?

 What's the VC dim. of axis parallel rectangles in 2D? sign(1- 2*1_{x ∈ rectangle})



Some placement of 4 pts can't be shattered

Another VC dim. example - What can't we shatter?

What's the VC dim. of axis parallel rectangles in 2D? sign(1- 2*1_{x ∈ rectangle})

If VC(H) = 4, then for all placements of 5 pts, there exists a labeling that can't be shattered

Examples of VC dimension

- Linear classifiers:
 - VC(H) = d+1, for d features plus constant term

Decision stumps: VC(H) = d+1

Axis parallel rectangles: VC(H) = 2d (4 if d=2)

1 Nearest Neighbor: VC(H) = ∞

VC dimension and size of hypothesis space

 To be able to shatter m points, how many hypothesis do we need?

Given |H| hypothesis can hope to shatter max m=log₂|H| points

$$VC(H) \leq \log_2 |H|$$

So VC bound is tighter.

Summary of PAC bounds

With probability $\geq 1-\delta$,

- 1) for all $h \in H$ s.t. $error_{train}(h) = 0$,
- $\operatorname{error}_{\mathsf{true}}(\mathsf{h}) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$ for all $\mathsf{h} \in \mathsf{H}$, $|\operatorname{error}_{\mathsf{true}}(\mathsf{h}) \operatorname{error}_{\mathsf{train}}(\mathsf{h})| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$ 2) for all $h \in H$,

3) for all
$$h \in H$$
,
$$|\operatorname{error}_{\mathsf{true}}(\mathsf{h}) - \operatorname{error}_{\mathsf{train}}(\mathsf{h})| \le \varepsilon = 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$$

Limitation of VC dimension

Hard to compute for many hypothesis spaces

```
VC(H) ≥ lower bound (easy)
VC(H) = ... (HARD!)
```

For all placements of VC(H)+1 points, there exists a labeling that can't be shattered

Too loose for many hypothesis spaces

```
linear SVMs, VC dim = d+1 (d features) kernel SVMs, VC dim = ??
```

= ∞ (Gaussian kernels)

Deep Neural nets, VC dim = very large

Suggests Gaussian kernels and deep nets are really BAD!! But contradicts practice!

What you need to know

- PAC bounds on true error in terms of empirical/training error and complexity of hypothesis space
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case Number of hypothesis
 - Infinite case VC dimension

Other bounds – Rademacher complexity (data dependent), Margin based (complexity low if margin achieved high), Mistake bounds, ...