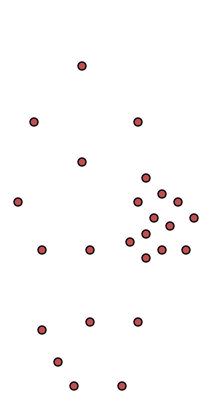
Gaussian Mixture Models

Aarti Singh

Machine Learning 10-315 Nov 13, 2019

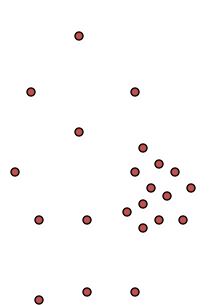
Some slides courtesy of Eric Xing, Carlos Guestrin

(One) bad case for K-means



- Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

(One) bad case for K-means



- Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

Partitioning Algorithms

- K-means
 - hard assignment: each object belongs to only one cluster

- Mixture modeling
 - soft assignment: probability that an object belongs to a cluster

Generative approach

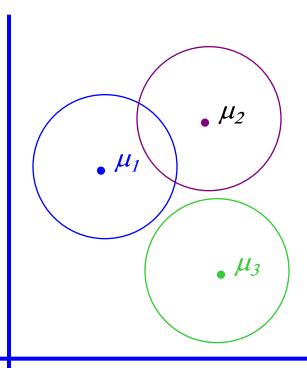
Gaussian Mixture Model

Mixture of K Gaussian distributions: (Multi-modal distribution)

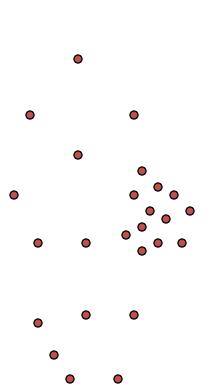
$$p(x|y=i) \sim N(\mu_i, \sigma^2 I)$$

$$p(x) = \sum_i p(x|y=i) P(y=i)$$

$$\downarrow \qquad \qquad \downarrow$$
Mixture Mixture component proportion



(One) bad case for K-means



- Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

General GMM

GMM - Gaussian Mixture Model (Multi-modal distribution)

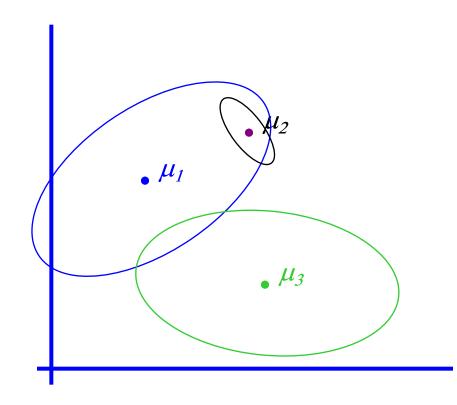
$$p(x|y=i) \sim N(\mu_i, \Sigma_i)$$

$$p(x) = \sum_i p(x|y=i) P(y=i)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Mixture \qquad Mixture$$

$$component \qquad proportion$$



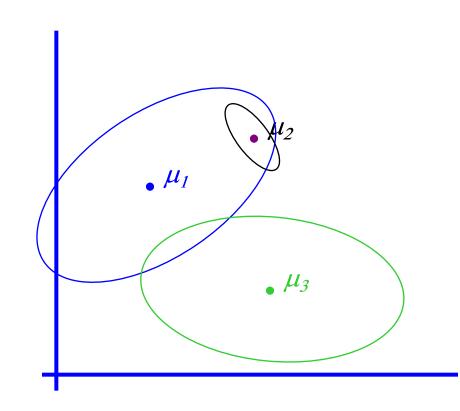
General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

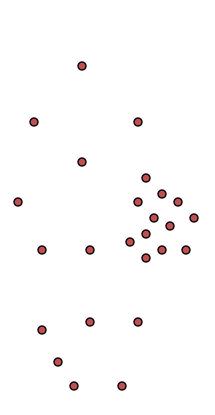
- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- 1) Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint $x \sim N(\mu_i, \Sigma_i)$



(One) bad case for K-means



- Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable

General GMM

GMM - Gaussian Mixture Model (Multi-modal distribution)

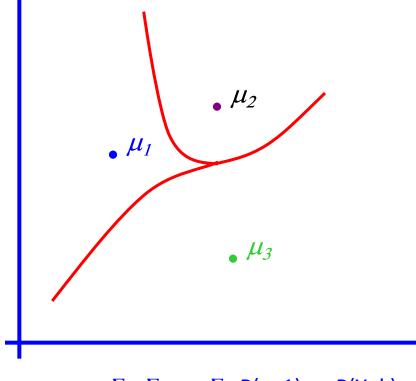
$$p(x|y=i) \sim N(\mu_i, \Sigma_i)$$

Gaussian Bayes Classifier:

$$\log \frac{P(y=i \mid x)}{P(y=j \mid x)}$$

$$= \log \frac{p(x \mid y=i)P(y=i)}{p(x \mid y=j)P(y=j)}$$

$$= x Wx + w^{T}x$$

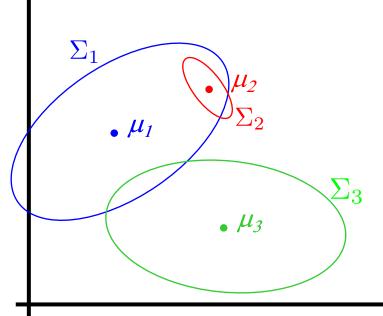


→ Depend on $\mu_1, \mu_2, ..., \mu_K, \Sigma_1, \Sigma_2, ..., \Sigma_K$, P(y=1),..., P(Y=k)

"Quadratic Decision boundary" – second-order terms don't cancel out

Learning General GMM

$$x_1,\dots,x_m \sim p(x) = \sum_{i=1}^k p(x|Y=i)P(Y=i) \ \downarrow$$
 Mixture Mixture component proportion, $\mathbf{p_i}$



Gaussian mixture model

$$p(x|Y=i) \sim \mathcal{N}(\mu_i, \Sigma_i)$$

Parameters:
$$\{p_i, \mu_i, \Sigma_i\}_{i=1}^K$$

How to estimate parameters? Max Likelihood
 But don't know labels Y (recall Gaussian Bayes classifier)

Learning General GMM

Maximize marginal likelihood:

argmax
$$\prod_{j} P(x_{j}) = \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} P(y_{j}=i,x_{j})$$

= argmax $\prod_{j} \sum_{i=1}^{K} P(y_{j}=i)p(x_{j}|y_{j}=i)$

 $P(y_i=i) = P(y=i)$ Mixture component i is chosen with prob P(y=i)

$$= \arg \max \prod_{j=1}^{m} \sum_{i=1}^{k} P(y=i) \frac{1}{\sqrt{\det(\Sigma_{i})}} \exp \left[-\frac{1}{2} (x_{j} - \mu_{i})^{T} \sum_{i} (x_{j} - \mu_{i}) \right]$$

How do we find the μ_i, Σ_i s and P(y=i)s which give max. marginal likelihood?

- * Set $\frac{\partial}{\partial \mu_i}$ log Prob (....) = 0 and solve for μ_i 's. Non-linear not-analytically solvable
- * Use gradient descent: Doable, but often slow

GMM vs. k-means

Maximize marginal likelihood:

argmax
$$\prod_{j} P(x_{j}) = \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} P(y_{j}=i,x_{j})$$

= argmax $\prod_{i} \sum_{i=1}^{K} P(y_{i}=i)p(x_{i}|y_{i}=i)$

What happens if we assume Hard assignment?

$$P(y_j = i) = 1 \text{ if } i = C(j)$$

= 0 otherwise

argmax
$$\Pi_j$$
 $P(x_j)$ = argmax Π_j $p(x_j|y_j=C(j))$ k-means!
= argmax $\prod_{j=1}^n \exp(\frac{-1}{2\sigma^2}\|x_j-\mu_{C(j)}\|^2)$
= argmin $\sum_{j=1}^n \|x_j-\mu_{C(j)}\|^2$) = arg $\min_{\mu,C} F(\mu,C)$

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden labels) first

- No need to choose step size as in Gradient methods.
- EM is an Iterative algorithm with two linked steps:

E-step: fill-in hidden data (Y) using inference M-step: apply standard MLE/MAP method to estimate parameters $\{p_i, \mu_i, \Sigma_i\}_{i=1}^k$

• We will see that this procedure monotonically improves the likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

EM for spherical, same variance GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$P(y=i|x_j,\mu_1...\mu_k) \propto exp\left(-\frac{1}{2\sigma^2}||x_j-\mu_i||^2\right) P(y=i)$$
 In K-means "E-step" we do hard assignment

In K-means "E-step"

EM does soft assignment

M-step

Compute Max. like μ given our data's class membership distributions (weights)

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

Exactly same as MLE with weighted data

Iterate.

EM for general GMMs

Iterate. On iteration t let our estimates be

$$\lambda_t = \{\, \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \, ... \, \mu_k{}^{(t)}, \, \Sigma_1{}^{(t)}, \, \Sigma_2{}^{(t)} \, ... \, \Sigma_k{}^{(t)}, \, p_1{}^{(t)}, \, p_2{}^{(t)} \, ... \, p_k{}^{(t)} \, \}$$

 $p_i^{(t)}$ is shorthand for estimate of P(y=i) on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

$$P(y = i | x_j, \lambda_t) \propto p_i^{(t)} p(x_j | \mu_i^{(t)}, \Sigma_i^{(t)})$$

Just evaluate a $Gaussian at x_i$

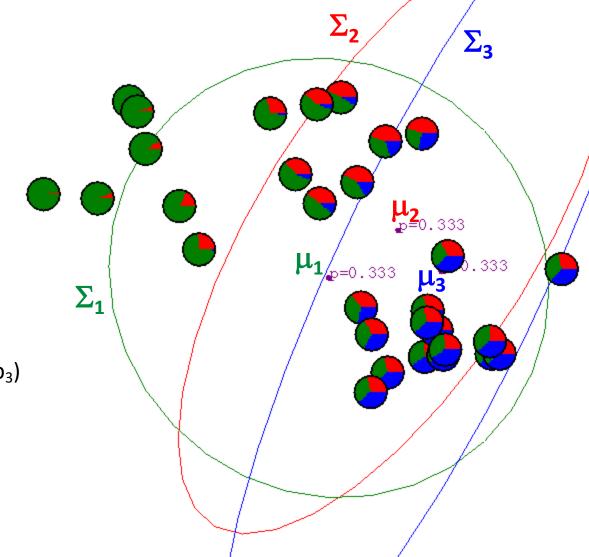
M-step

Compute MLEs given our data's class membership distributions (weights)

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \sum_{i} \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) (x_{j} - \mu_{i}^{(t+1)}) (x_{j} - \mu_{i}^{(t+1)})^{T}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})}$$

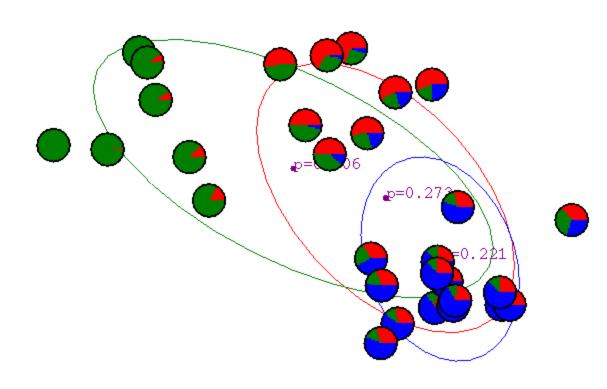
$$p_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{m} \qquad m = \#data points$$

EM for general GMMs: Example

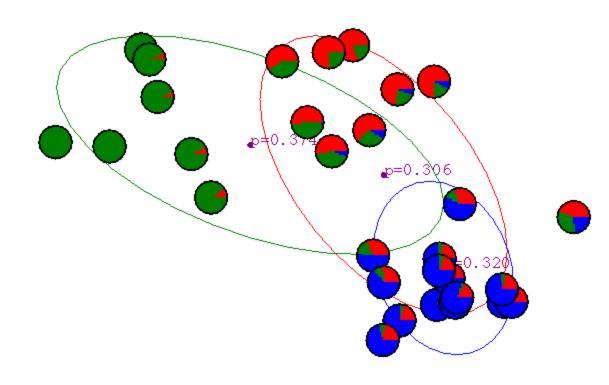


 $P(y = | x_j, \mu_1, \mu_2, \mu_3, \Sigma_1, \Sigma_2, \Sigma_3, p_1, p_2, p_3)$

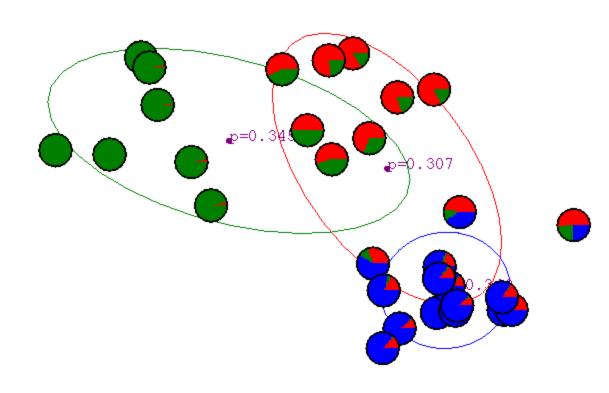
After 1st iteration



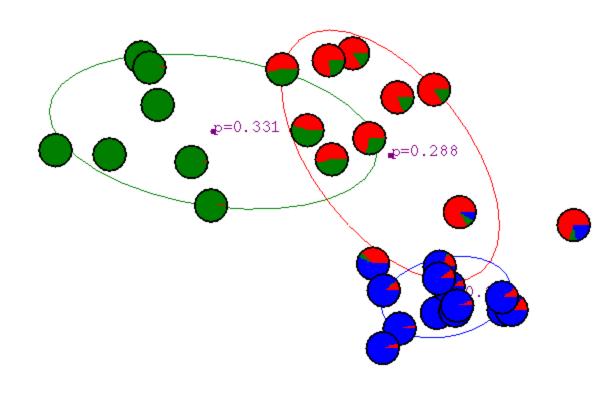
After 2nd iteration



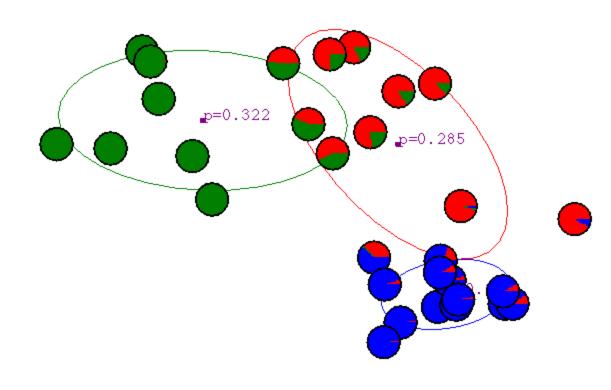
After 3rd iteration



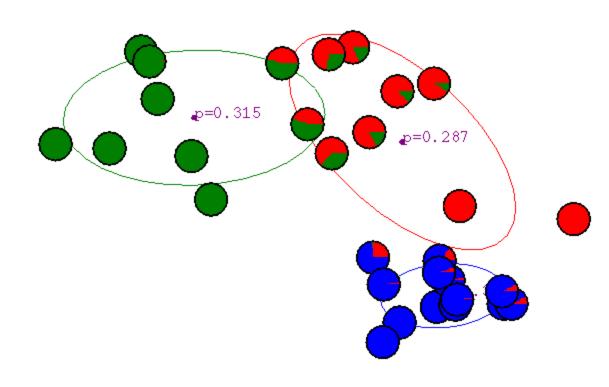
After 4th iteration



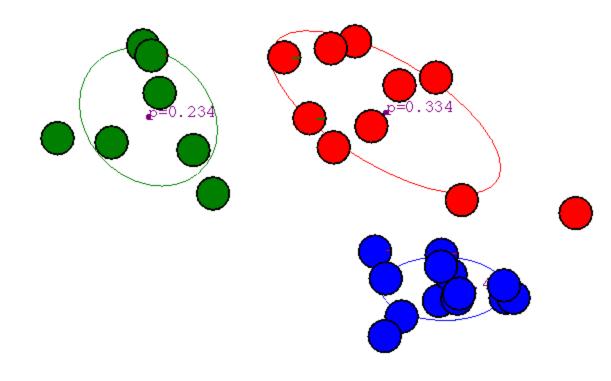
After 5th iteration



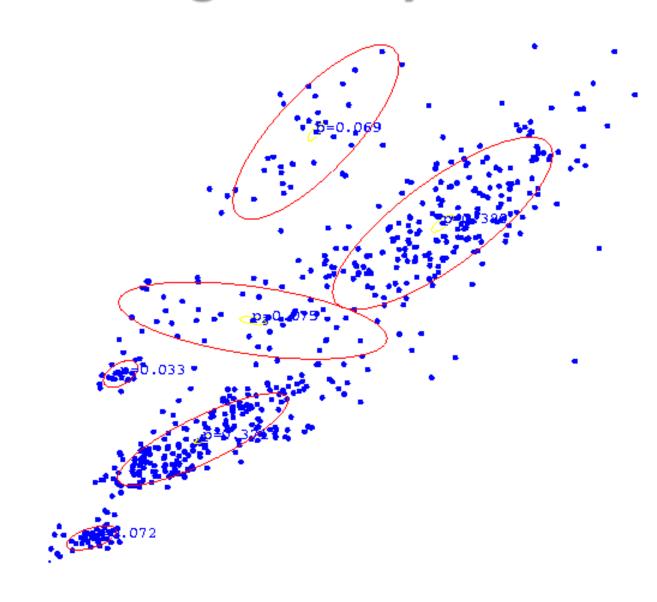
After 6th iteration



After 20th iteration



GMM clustering of assay data



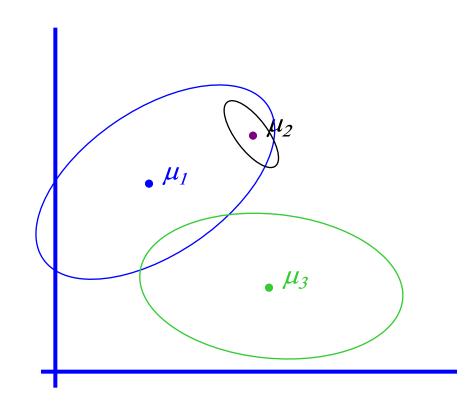
General GMM

GMM - Gaussian Mixture Model (Multi-modal distribution)

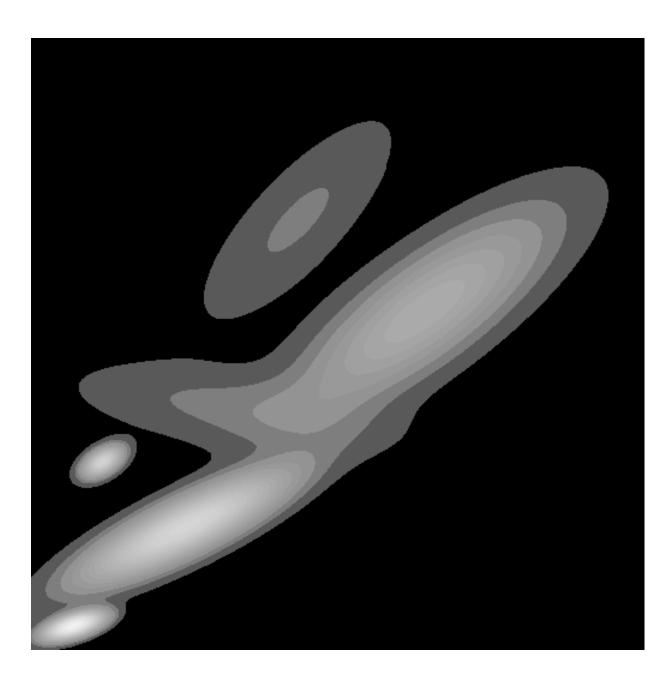
$$p(x) = \sum_{i} p(x/y=i) P(y=i)$$

$$\downarrow \qquad \qquad \downarrow$$
Mixture
$$component \qquad proportion$$

$$p(x|y=i) \sim N(\mu_i, \Sigma_i)$$

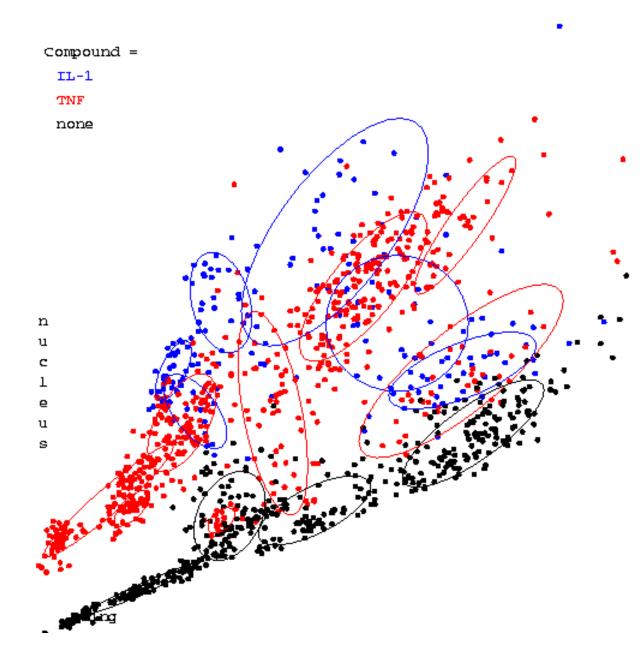


Resulting Density Estimator

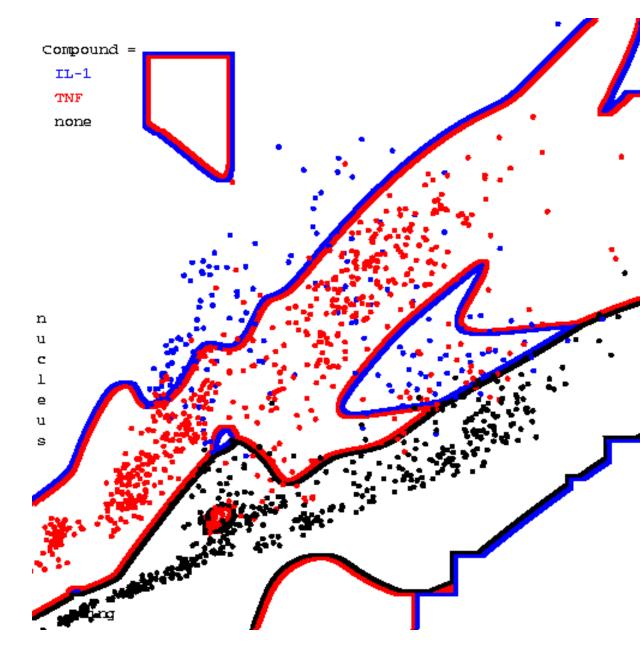


Three classes of assay

(each learned with it's own mixture model)



Resulting Bayes Classifier



What you need to know...

- Hierarchical clustering algorithms
 - Single-linkage
 - Complete-linkage
 - Centroid-linkage
 - Average-linkage
- Partition based clustering algorithms
 - K-means
 - Coordinate descent
 - Seeding
 - Choosing K
 - Mixture modelsEM algorithm