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Least Squares and M(C)LE
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Intuition: Signal plus (zero-mean) Noise model

Least Square Estimate is same as Maximum Conditional 
Likelihood Estimate under a Gaussian model !

Conditional log likelihood

= X�⇤

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized Least Squares and M(C)AP
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What if                   is not invertible ? 

Conditional log likelihood log prior

I) Gaussian Prior

0

Ridge Regression

b�MAP = (AAA>AAA+ �III)�1AAA>YYY

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized Least Squares and M(C)AP
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What if                   is not invertible ? 

Prior belief that β is Gaussian with zero-mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Conditional log likelihood log prior

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized Least Squares and M(C)AP
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What if                   is not invertible ? 

Prior belief that β is Laplace with zero-mean biases solution to “sparse” β

Lasso

II) Laplace Prior

Conditional log likelihood log prior

p({Yi}ni=1|�,�2, {Xi}ni=1)



Beyond Linear Regression
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Polynomial regression
Regression with nonlinear features

Kernelized Ridge Regression 

Local Kernel Regression 



Polynomial Regression
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Univariate (1-dim) 
case:

where                                                        ,

Multivariate (p-dim) 
case:

degree m

f(X) = �0 + �1X
(1) + �2X

(2) + · · ·+ �pX
(p)

+
pX

i=1

pX

j=1

�ijX
(i)X(j) +

pX

i=1

pX

j=1

pX

k=1

X(i)X(j)X(k)

+ . . . terms up to degree m

b�MAP = (ATA+ �I)�1ATYor

where                                                        
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Polynomial Regression
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Polynomial of order k, equivalently of degree up to k-1

What is the right order? Recall overfitting! 



Bias – Variance Tradeoff

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but unstable
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Bias – Variance Decomposition

It can be shown that

E[(f(X) - f*(X))2] = Bias2 + Variance

Bias = E[f(X)] – f*(X) How far is the model from 
best model on average

Variance = E[(f(X) - E[f(X)])2] How variable is the model



Effect of Model Complexity

Test error
Variance

Bias



Effect of Model Complexity

Test error
Variance

BiasTraining error
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Regression with nonlinear features

In general, use any nonlinear features 
e.g. eX, log X, 1/X, sin(X), …

Nonlinear 
features

Weight of
each feature

�0(X1) �1(X1) . . . �m(X1)

�0(Xn) �1(Xn) . . . �m(Xn)

X = [�0(X) �1(X) . . . �m(X)]

b�MAP = (ATA+ �I)�1ATY
or
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Can we use kernels?
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Ridge regression (dual)

Similarity with SVMs
Primal problem: SVM Primal problem:

Lagrangian: 

αi – Lagrange parameter, one per training point

min
�,zi

nX

i=1

z2i + �k�k22

s.t. zi = Yi �Xi�

b�MAP = (ATA+ �I)�1ATY

min
w,⇠i

C
nX

i=1

⇠i +
1

2
kwk22

s.t. ⇠i = max(1� YiXi · w, 0)w, 0)

nX

i=1

z2i + �k�k2 +
nX

i=1

↵i(zi � Yi +Xi�)
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Ridge regression (dual)

Dual problem: 

α = {αi} for i = 1,…, n

Taking derivatives of Lagrangian wrt b and zi we get:

Dual problem:

n-dimensional optimization problem

b�MAP = (ATA+ �I)�1ATY

max
↵

�↵>↵

2
� 1

2�
↵>AA>↵� ↵>Y

max
↵

min
�,zi

nX

i=1

z2i + �k�k2 +
nX

i=1

↵i(zi � Yi +Xi�)

� = � 1

2�
A>↵ zi = �↵i

2

4 4
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Ridge regression (dual)

Dual problem: 

can get back 

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

max
↵

�↵>↵

2
� 1

2�
↵>AA>↵� ↵>Y ) b↵ = �

 
AA>

�
+ I

!�1

Y

b� = � 1

�

nX

i=1

↵iXi = � 1

�
A>↵ = A>(AA> + �I)�1Y

Weight of each training point (but typically not sparse)

4 4
2

Weighted average of 
training points

�̂ = � 1

2�
A>↵̂
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Kernelized ridge regression

Using dual, can re-write solution as:

How does this help? 
• Only need to invert n x n matrix (instead of p x p or m x m)
• More importantly, kernel trick!

where

Work with kernels, never need to write out the high-dim vectors

KX(i) = ���(X) · ���(Xi)

K(i, j) = ���(Xi) · ���(Xj)

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

bfn(X) = KX(K+ �I)�1Y
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Kernelized ridge regression

where

Work with kernels, never need to write out the high-dim vectors

Examples of kernels:

Polynomials of degree exactly d

Polynomials of degree up to  d

Gaussian/Radial kernels

KX(i) = ���(X) · ���(Xi)

K(i, j) = ���(Xi) · ���(Xj)
bfn(X) = KX(K+ �I)�1Y

Ridge Regression with (implicit) nonlinear features             !KX(i) = ���(X) · ���(Xi)f(X) = ���(X)�



Local Kernel Regression
• What is the temperature 

in the room?

57
Average “Local” Average

at location x?

x



Local Kernel Regression

• Nonparametric estimator akin to kNN
• Nadaraya-Watson Kernel Estimator

Where

• Weight each training point based on distance to test 
point

• Boxcar kernel yields
local average

58

h



Kernels
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Choice of kernel bandwidth h
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Image Source: 
Larry’s book – All 
of Nonparametric
Statistics

h=1 h=10

h=50 h=200

Choice of kernel is
not that important

Too small

Too large
Just 
right

Too small



Kernel Regression as Weighted Least 
Squares
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Weighted Least Squares

Kernel regression corresponds to locally constant estimator 
obtained from (locally) weighted least squares 

i.e. set    f(Xi) = b (a constant)



Kernel Regression as Weighted Least 
Squares

62

constant

Notice that

set   f(Xi) = b (a constant)



Local Linear/Polynomial Regression
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Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial 
estimator obtained from (locally) weighted least squares 

i.e. set    
(local polynomial of degree p around X)



What you should know
Linear Regression

Least Squares Estimator
Normal Equations
Gradient Descent
Probabilistic Interpretation (connection to MCLE)

Regularized Linear Regression (connection to MCAP)
Ridge Regression, Lasso

Beyond Linear 
Polynomial regression, Regression with Non-linear features, Bias-

variance tradeoff, Kernelized ridge regression, Local Kernel Regression and 
Weighted Least Squares
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