Regularized Linear Regression,
Nonlinear Regression

Aarti Singh

Machine Learning 10-315
Oct 30, 2019

ACHI




Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model F(X) = X3

Y=f(X)+e=XB"+e¢

e ~N(0,0°I) Y ~ N(XB*,c°I)

;;;eeee:ee::e: 00-0-0-000-0-0-00—009
BumLe = arg max log p({Yi} 118, 0%, { X))
| |

Y
Conditional log likelihood

n
=argmin 3 (X6 - Y;)? =3
1=1

Least Square Estimate is same as Maximum Conditional
Likelihood Estimate under a Gaussian model ! 39



Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Buap = arg maxlog p({Y;}iL, |8, 0%, {X;}[+1og p(6)
\ J J
Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
i=1
constant(c?, 72)
Baniap = (ATA+A)TIATY
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Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

BI\/IAP — arg mﬁax log _‘p({Yi}?:ﬂﬁa 027 {Xq;}‘?’;HOQ p(B)
\ J J

Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” B 41




Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Bmap = arg max log p({Yi} 1I5, 2 (X" +|09p(6)

Y
Conditional Iog likelihood log prior

Il) Laplace Prior

11d

B; ~ Laplace(0,t) p(B;) e~ 1Gil/t

n
Buar = argmin 3 (¥; - X;3)% + M|Bl1 Lasso
1=1
constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “sparse” 42




Beyond Linear Regression

Polynomial regression
Regression with nonlinear features

Kernelized Ridge Regression

Local Kernel Regression

43



Polynomial Regression degree i
/

Univariate (1-dim) f(X) = Bg + 51X + 3o X2 + - + B X™ = X3
case:

where X =[1 X X2...X™],8=1[B1...08m]"

3= (ATA) 1ATY or (ATA +AD)'ATY (X)) = X3

1 X X? ... XD
where A = | . :

1 X, X7 ... XM

Multivariate (p-dim) f(X) = g, + B XM 4 B, X3 4o 4 BpX(p)

case: p p o b p -

+ Z Z Bin(Z)X(]) 4+ S: S: S: x @) x () x (k)
i=1 j=1 i=1 j=1 k=1

+...terms up to degree m
44



Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1

k=1

k=3
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What is the right order? Recall overfitting!
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Bias — Variance Tradeoff

3 Independent training datasets

Large bias, Small variance — poor approximation but robust/stable

“o 0.1 0.2 03 04 05 06 07 08 09 1 “o 0.1 0.2 03 04 05 06 07 08 09 1 “o 0.1 0.2 03 04 05 06 07 08 09 1



Bias — Variance Decomposition

It can be shown that
E[(f(X) - f*(X))?] = Bias? + Variance

Bias = E[f(X)] — f*(X) How far is the model from
best model on average

Variance = E[(f(X) - E[f(X)])?] How variable is the model

47



Effect of Model Complexity

Test error

Variance

Complexity of F



Effect of Model Complexity

Test error

Training error

Complexity of F



Regression with nonlinear features

| ¢o(X)
fF(X) =308 X7 = YT Bj¢;(X) ¢1(X)
S
Weight of Nonlinear

each feature features \/ D> (X)

In general, use any nonlinear features

e.g. eX log X, 1/X, sin(X), ...

3= (ATA)O_rlATY A ¢50(X1) $1(X1) ¢m(EX1)-
(ATA + )\I)_lATY _¢O(Xn) ¢1(Xn) s (bm(Xn)_
fn(X) = X3 X = [¢o(X) $1(X) .. ¢m(X)]




Can we use kernels?
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Ridge regression (dual)

min 3 (V= XB)  + Bl B=(ATA+A)TIATY

Similarity with SVMs

Primal problem: SVM Primal problem'
n
min Y 27 + Al 813 min CZ& —leb
=1
s.t. z; =Y,; — Xzﬁ S.t. fz = max(l — Y, X, w, O)
Lagrangian:

2 + MBI +Zozz ~Y; + X,5)

1=1

a; — Lagrange parameter, one per training point .



Ridge regression (dual)

min 3 (V= XB)  + Bl B=(ATA+A)TIATY

Dual problem:

maxminZz —I—)\HBH2+Z% - Y + X;p)

o B

a={o}fori=1,..,n

Taking derivatives of Lagranglan wrt 3 and z; we get:

8%
= ——AT 2 = ——
b= 2\ ¢ 2
Dual bl a'a ! TAATa—a'Y
© max — — o —
ual problem 2 1 5

n-dimensional optimization problem

53



Ridge regression (dual)

n
min 3 V- X2+ AI8l2 B=(ATA+A)TATY
1=1
= AT(AAT + D) 1Y

Dual problem:

T T -1
a'a 1 7 - - . AA
- - _ = _ = — 2
max 1 o AA a—a'Y = ( )\ +I> Y
. 1
cangetback f=——A'a =AT(AAT + )Y

2\ \

We|ghtgd dverage of Weight of each training point (but typically not sparse)
training points 54



Kernelized ridge regression

B=(ATA +)D)'ATY fn(X) = X8

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

3 _ 1Y where Kx (i) = ¢(X) - 9(Xi)
fa(X) =Kx(K+A)™Y wh K(i,j) = ¢(X;) - ¢(X;)

Work with kernels, never need to write out the high-dim vectors

55



Kernelized ridge regression

Kx (i) = ¢(X) - (X5)
K(i,j) = ¢(X;) - #(X;)

Work with kernels, never need to write out the high-dim vectors

ﬁ%(X) = Kx(K+AI)"'Y where

Examples of kernels:
Polynomials of degree exactlyd K (u,v) = (u - V)d

Polynomials of degreeupto d K (u,v) = (u-v + 1)d

| - _ lu—v||?
Gaussian/Radial kernels K(u,v) =exp | — >3
o

Ridge Regression with (implicit) nonlinear features ¢(X)! f(X)

¢(X)0

56



Local Kernel Regression

* What is the temperature

in the room? at location x?
’..oo ...00
o_© o_©
° .0 ’:: ° .O:I
o o o ®
o o0 ® oo :' o :o . ° :
lo o ... ....... lo o .:. ......I
o
.0. .0'0.0 .o. ‘.o..o.o‘o.o.l
N 1 R S Yl v
T == Z Y; T(x) = 7’;1 IXi—al|<h
noi=1 2i=11||X;—=||<n

Average "Local” Average
57



Local Kernel Regression @ s

Nonparametric estimator akin to kNN °°. ,:-.-',-‘:-'..

Nadaraya-Watson Kernel Estimator

fn(X) = ; Y; Where wi(X) = “<
fn(X) i;w Z?:lK(XhXZ)

Weight each training point based on distance to test
point

Boxcar kernEI y|E|dS boxcar kernel :

local average K(x) = +1(2)

58



=
=
v
<

boxcar kernel :

K(z)= %I(.’l‘).

(Gaussian kernel :

o 1 _ 2
K(z) = —e /2
V2T

Kernels

Xj—A X] Xj ~|~IA

59



power

Choice of kernel bandwidth h

power

h=1 Too small h=10 Too small Image Source:
g VN Larry’s book — All
% of Nonparametric
o Statistics
0 200 100 0 200 100
multipole multipole Choice of kernel is
not that important
h=200:. ... Too large
2 ' T~
|' T T r T T
0 200 400 0 200 400

multipole multipole °0



Kernel Regression as Weighted Least
Squares

min 3w (D -V () =
1 =1

Weighted Least Squares

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=p (aconstant)

61



Kernel Regression as Weighted Least
Squares

set f(X,) =P (aconstant)

> : K (55)
min » w;(8 —Y;) w;(X) = X-X,
=R S K (S5)
constant
n n
9J(B) — 9 w;(B—-Y;) =0 Notice that Z w; = 1

1=1

62



Local Linear/Polynomial Regression

min 3w (D -V () =
1 =1

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial
estimator obtained from (locally) weighted least squares

e set f(Xi) = fotB1(X;—X)+ 22 (X, X) - +5p<x _x)?

(local polynomial of degree p around X)

63



What you should know

Linear Regression

Least Squares Estimator

Normal Equations

Gradient Descent

Probabilistic Interpretation (connection to MCLE)

Regularized Linear Regression (connection to MCAP)

Ridge Regression, Lasso

Beyond Linear

Polynomial regression, Regression with Non-linear features, Bias-

variance tradeoff, Kernelized ridge regression, Local Kernel Regression and
Weighted Least Squares
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