

Regularized Linear Regression, Nonlinear Regression

Aarti Singh

Machine Learning 10-315

Oct 30, 2019

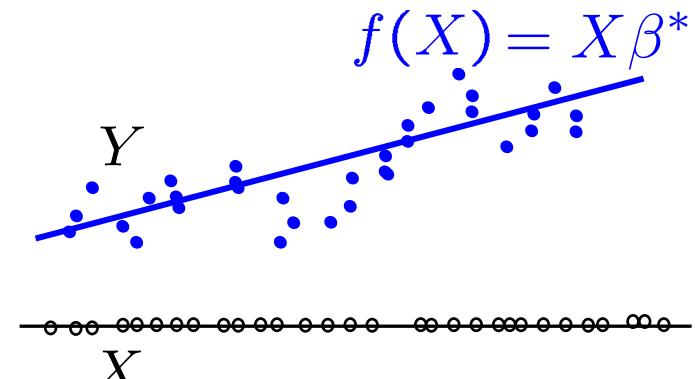
MACHINE LEARNING DEPARTMENT

Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}) \quad Y \sim \mathcal{N}(X\beta^*, \sigma^2 \mathbf{I})$$



$$\hat{\beta}_{\text{MLE}} = \arg \max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n)}_{\text{Conditional log likelihood}}$$

Conditional log likelihood

$$= \arg \min_{\beta} \sum_{i=1}^n (X_i \beta - Y_i)^2 = \hat{\beta}$$

Least Square Estimate is same as Maximum Conditional Likelihood Estimate under a Gaussian model !

Regularized Least Squares and M(C)AP

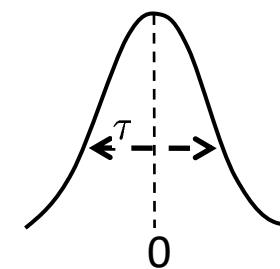
What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n)}_{\text{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\text{log prior}}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(\beta) \propto e^{-\beta^T \beta / 2\tau^2}$$



$$\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2$$

constant(σ^2, τ^2)

Ridge Regression

$$\hat{\beta}_{\text{MAP}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Regularized Least Squares and M(C)AP

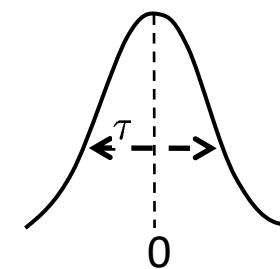
What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n)}_{\text{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\text{log prior}}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(\beta) \propto e^{-\beta^T \beta / 2\tau^2}$$



$$\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2$$

constant(σ^2, τ^2)

Ridge Regression

Prior belief that β is Gaussian with zero-mean biases solution to “small” β

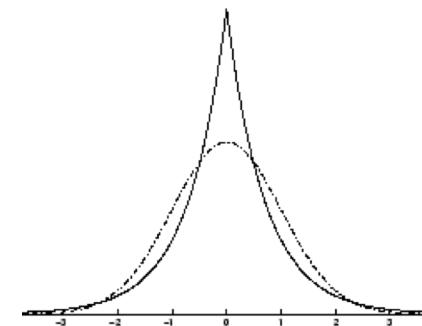
Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n)}_{\text{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\text{log prior}}$$

II) Laplace Prior

$$\beta_i \stackrel{iid}{\sim} \text{Laplace}(0, t) \quad p(\beta_i) \propto e^{-|\beta_i|/t}$$



$$\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1$$

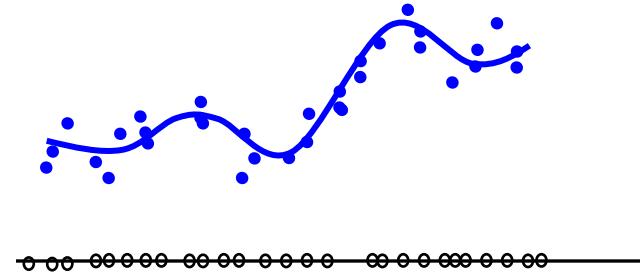
↓
constant(σ^2, t)

Prior belief that β is Laplace with zero-mean biases solution to “sparse” β

Beyond Linear Regression

Polynomial regression

Regression with nonlinear features



Kernelized Ridge Regression

Local Kernel Regression

Polynomial Regression

Univariate (1-dim) $f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_m X^m = \mathbf{X}\beta$
case:

where $\mathbf{X} = [1 \ X \ X^2 \ \dots \ X^m]^T$, $\beta = [\beta_1 \ \dots \ \beta_m]^T$

$$\hat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \text{ or } (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y} \quad \hat{f}_n(X) = \mathbf{X} \hat{\beta}$$

where $\mathbf{A} = \begin{bmatrix} 1 & X_1 & X_1^2 & \dots & X_1^m \\ \vdots & & \ddots & & \vdots \\ 1 & X_n & X_n^2 & \dots & X_n^m \end{bmatrix}$

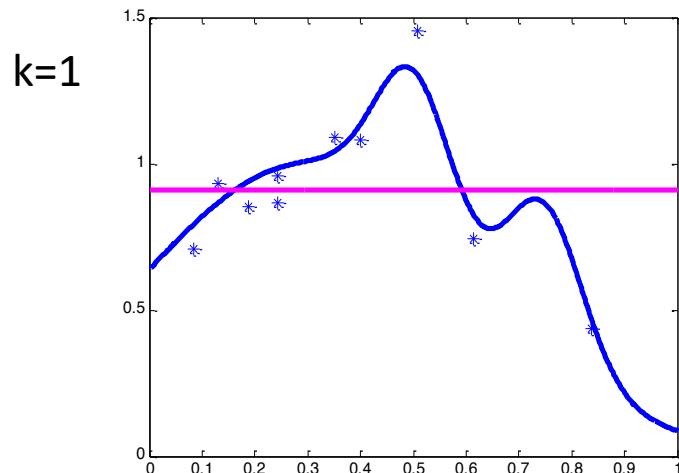
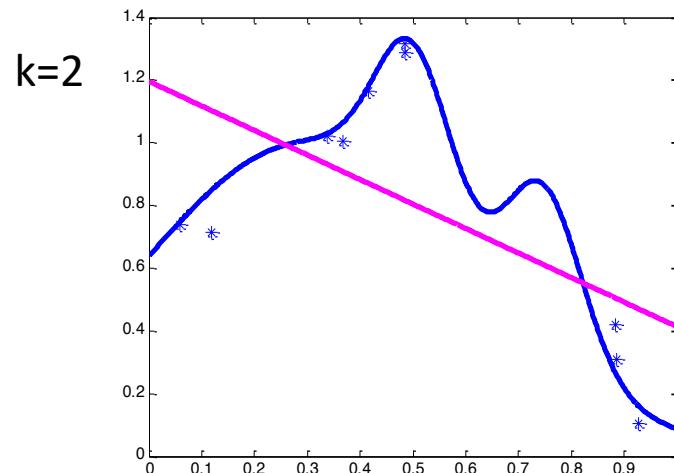
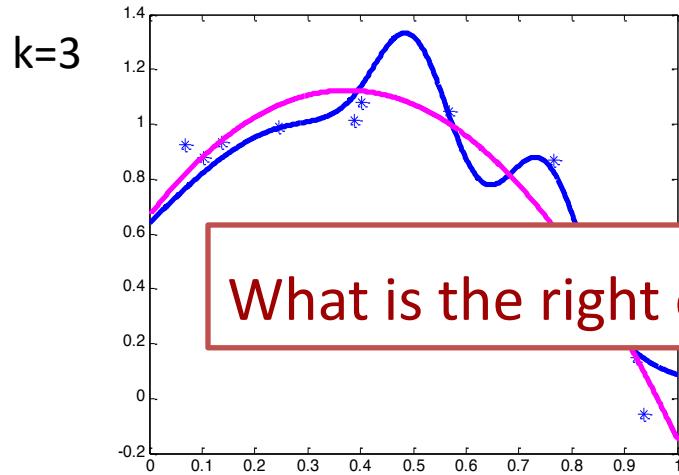
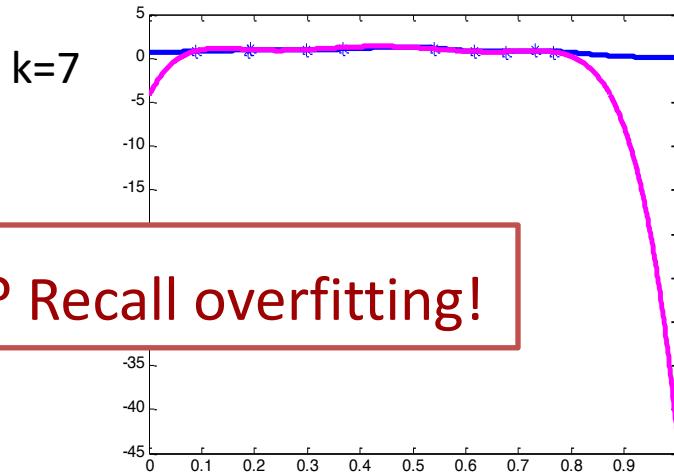
Multivariate (p-dim) $f(X) = \beta_0 + \beta_1 X^{(1)} + \beta_2 X^{(2)} + \cdots + \beta_p X^{(p)}$
case:

$$\begin{aligned} &+ \sum_{i=1}^p \sum_{j=1}^p \beta_{ij} X^{(i)} X^{(j)} + \sum_{i=1}^p \sum_{j=1}^p \sum_{k=1}^p X^{(i)} X^{(j)} X^{(k)} \\ &+ \dots \text{terms up to degree m} \end{aligned}$$

degree m

Polynomial Regression

Polynomial of order k , equivalently of degree up to $k-1$

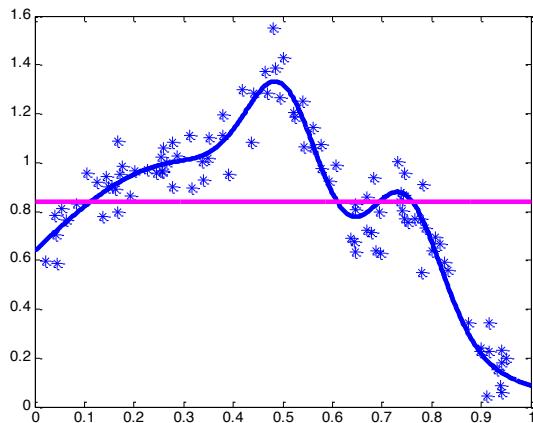
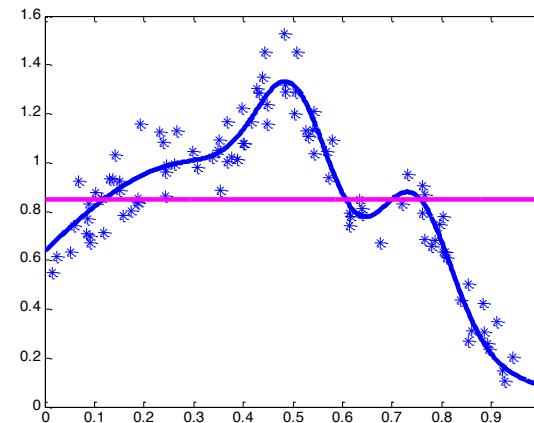
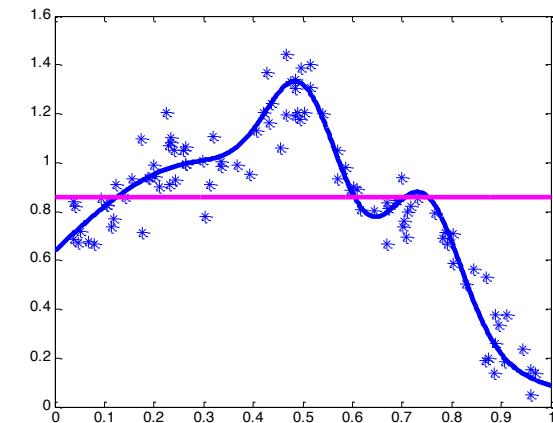


What is the right order? Recall overfitting!

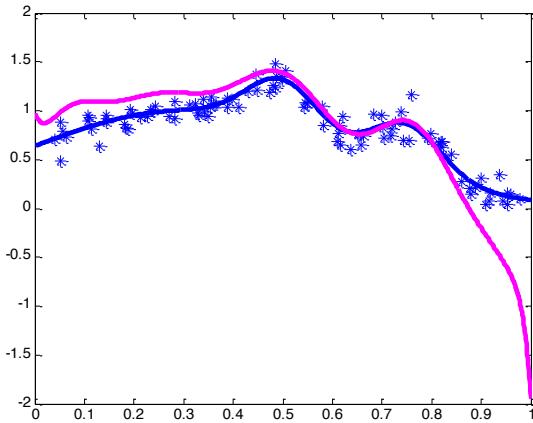
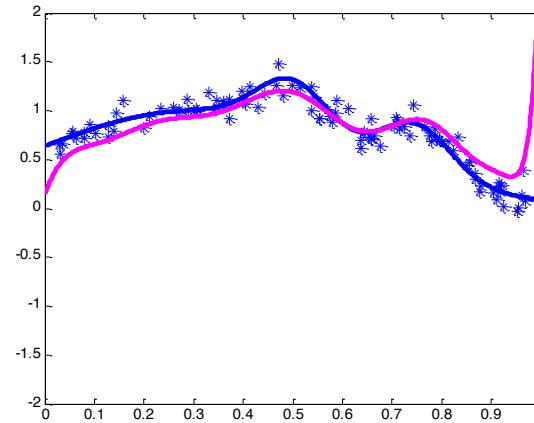
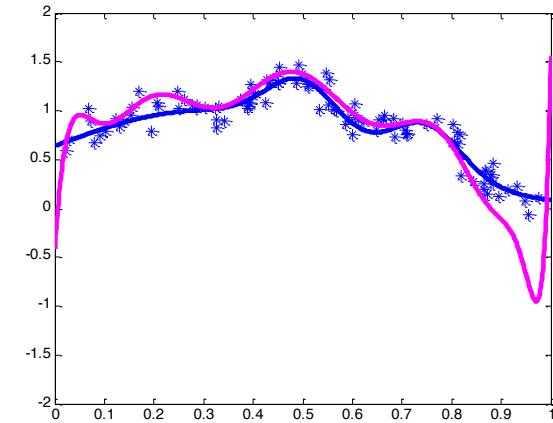
Bias – Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable



Small bias, Large variance – good approximation but unstable



Bias – Variance Decomposition

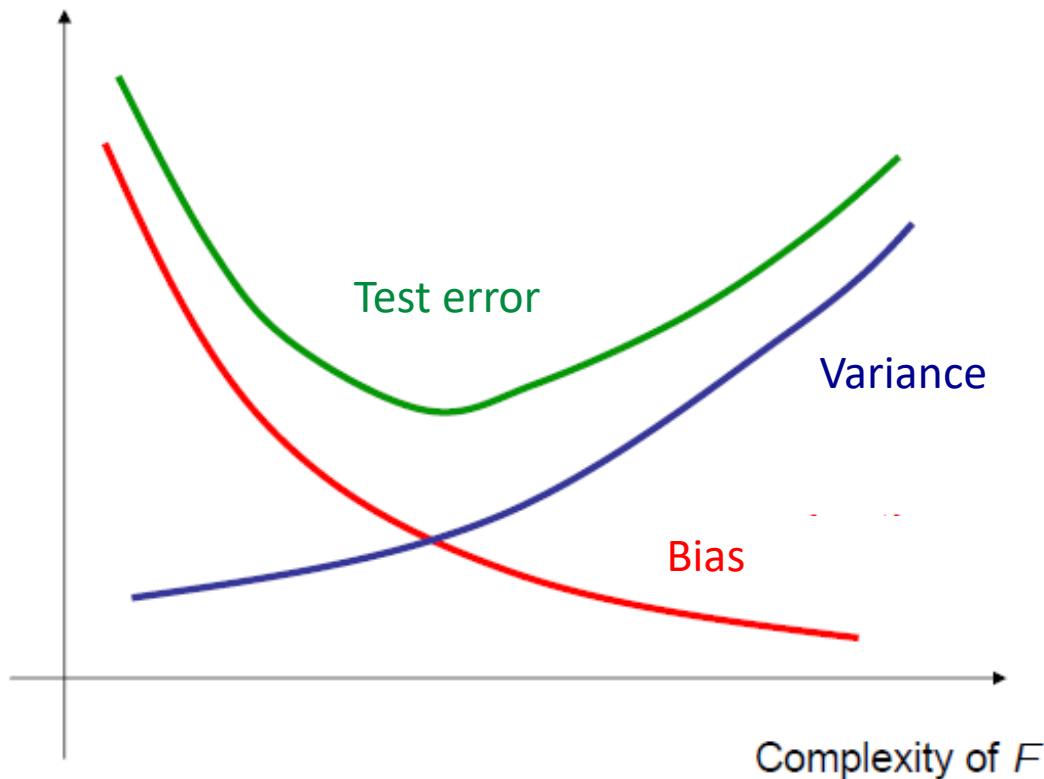
It can be shown that

$$E[(f(X) - f^*(X))^2] = \text{Bias}^2 + \text{Variance}$$

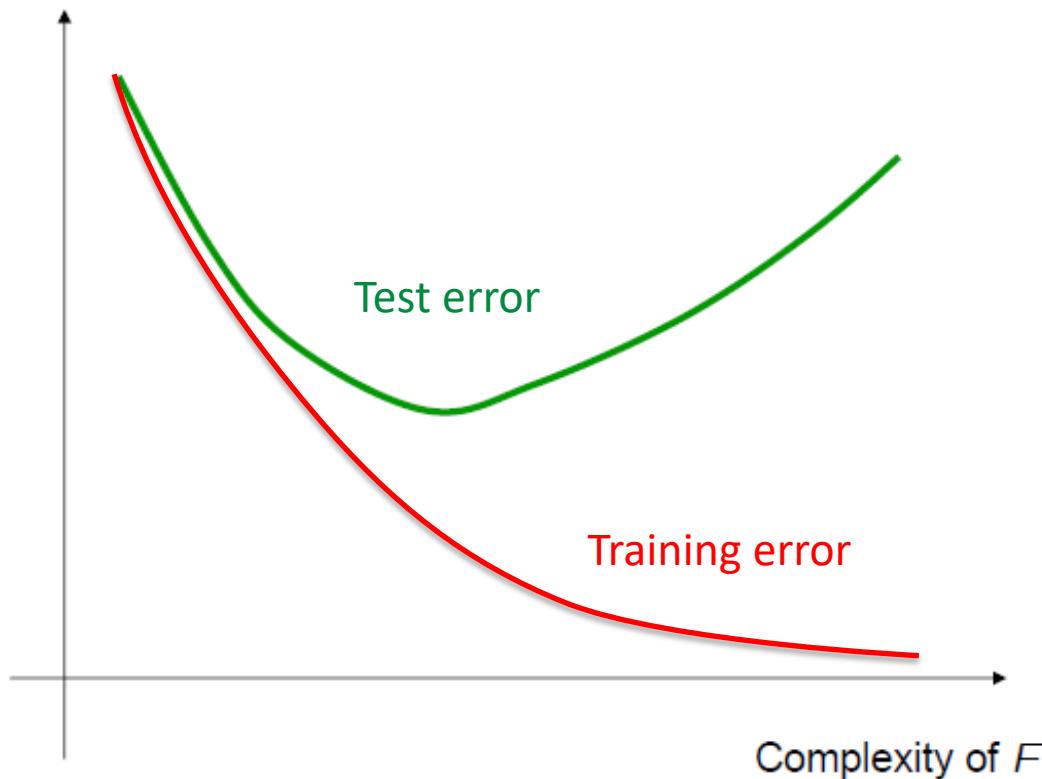
$\text{Bias} = E[f(X)] - f^*(X)$ How far is the model from best model on average

$\text{Variance} = E[(f(X) - E[f(X)])^2]$ How variable is the model

Effect of Model Complexity



Effect of Model Complexity

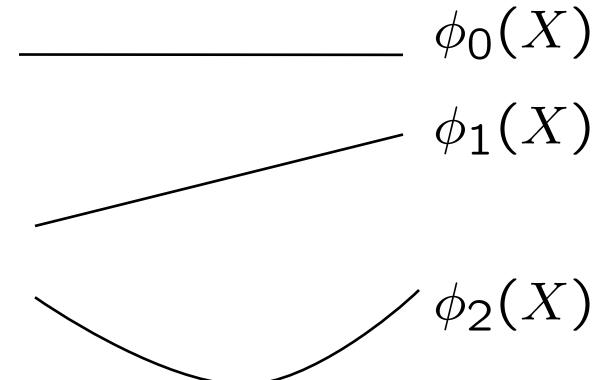


Regression with nonlinear features

$$f(X) = \sum_{j=0}^m \beta_j X^j = \sum_{j=0}^m \beta_j \phi_j(X)$$

Weight of
each feature

Nonlinear
features



In general, use any nonlinear features

e.g. e^X , $\log X$, $1/X$, $\sin(X)$, ...

$$\hat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$

or

$$(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{A} = \begin{bmatrix} \phi_0(X_1) & \phi_1(X_1) & \dots & \phi_m(X_1) \\ \vdots & \ddots & & \vdots \\ \phi_0(X_n) & \phi_1(X_n) & \dots & \phi_m(X_n) \end{bmatrix}$$

$$\hat{f}_n(X) = \mathbf{X} \hat{\beta}$$

$$\mathbf{X} = [\phi_0(X) \ \phi_1(X) \ \dots \ \phi_m(X)]$$

Can we use kernels?

Ridge regression (dual)

$$\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \quad \hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Similarity with SVMs

Primal problem:

$$\min_{\beta, z_i} \sum_{i=1}^n z_i^2 + \lambda \|\beta\|_2^2$$

$$\text{s.t. } z_i = Y_i - X_i \beta$$

SVM Primal problem:

$$\min_{w, \xi_i} C \sum_{i=1}^n \xi_i + \frac{1}{2} \|w\|_2^2$$

$$\text{s.t. } \xi_i = \max(1 - Y_i X_i w, 0)$$

Lagrangian:

$$\sum_{i=1}^n z_i^2 + \lambda \|\beta\|_2^2 + \sum_{i=1}^n \alpha_i (z_i - Y_i + X_i \beta)$$

α_i – Lagrange parameter, one per training point

Ridge regression (dual)

$$\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \quad \hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Dual problem:

$$\max_{\alpha} \min_{\beta, z_i} \sum_{i=1}^n z_i^2 + \lambda \|\beta\|^2 + \sum_{i=1}^n \alpha_i (z_i - Y_i + X_i \beta)$$

$$\alpha = \{\alpha_i\} \text{ for } i = 1, \dots, n$$

Taking derivatives of Lagrangian wrt β and z_i we get:

$$\beta = -\frac{1}{2\lambda} \mathbf{A}^T \alpha \quad z_i = -\frac{\alpha_i}{2}$$

Dual problem: $\max_{\alpha} -\frac{\alpha^T \alpha}{4} - \frac{1}{4\lambda} \alpha^T \mathbf{A} \mathbf{A}^T \alpha - \alpha^T \mathbf{Y}$

n-dimensional optimization problem

Ridge regression (dual)

$$\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \quad \hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$
$$= \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

Dual problem:

$$\max_{\alpha} -\frac{\alpha^T \alpha}{4} - \frac{1}{4\lambda} \alpha^T \mathbf{A} \mathbf{A}^T \alpha - \alpha^T \mathbf{Y} \quad \Rightarrow \hat{\alpha} = - \left(\frac{\mathbf{A} \mathbf{A}^T}{\lambda} + \mathbf{I} \right)^{-1} 2 \mathbf{Y}$$

can get back $\hat{\beta} = -\frac{1}{2\lambda} \mathbf{A}^T \hat{\alpha} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$

Weighted average of training points

Weight of each training point (but typically not sparse)

Kernelized ridge regression

$$\hat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\hat{f}_n(X) = \mathbf{X} \hat{\beta}$$

Using dual, can re-write solution as:

$$\hat{\beta} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

How does this help?

- Only need to invert $n \times n$ matrix (instead of $p \times p$ or $m \times m$)
- More importantly, kernel trick!

$$\hat{f}_n(X) = \mathbf{K}_X (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y} \text{ where}$$

$$\begin{aligned}\mathbf{K}_X(i) &= \phi(X) \cdot \phi(X_i) \\ \mathbf{K}(i, j) &= \phi(X_i) \cdot \phi(X_j)\end{aligned}$$

Work with kernels, never need to write out the high-dim vectors

Kernelized ridge regression

$$\hat{f}_n(X) = \mathbf{K}_X(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y} \text{ where} \quad \begin{aligned} \mathbf{K}_X(i) &= \phi(X) \cdot \phi(X_i) \\ \mathbf{K}(i, j) &= \phi(X_i) \cdot \phi(X_j) \end{aligned}$$

Work with kernels, never need to write out the high-dim vectors

Examples of kernels:

Polynomials of degree exactly d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$

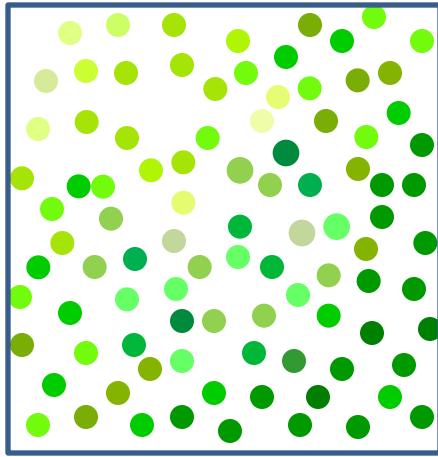
Polynomials of degree up to d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$

Gaussian/Radial kernels $K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$

Ridge Regression with (implicit) nonlinear features $\phi(X)$! $f(X) = \phi(X)\beta$

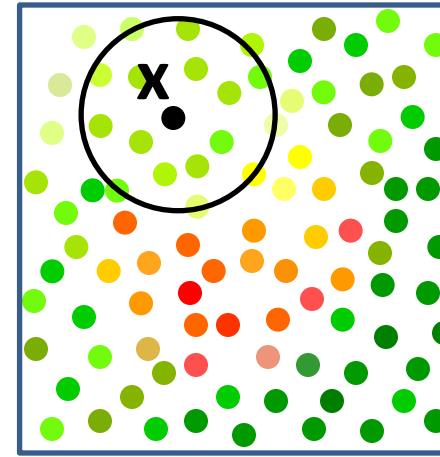
Local Kernel Regression

- What is the temperature in the room?
at location x ?



$$\hat{T} = \frac{1}{n} \sum_{i=1}^n Y_i$$

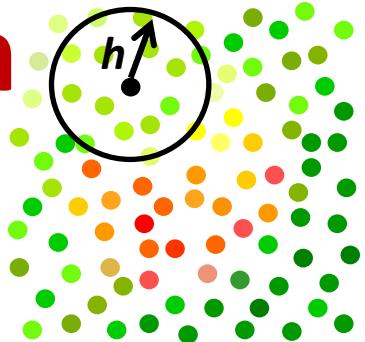
Average



$$\hat{T}(x) = \frac{\sum_{i=1}^n Y_i \mathbf{1}_{||X_i - x|| \leq h}}{\sum_{i=1}^n \mathbf{1}_{||X_i - x|| \leq h}}$$

"Local" Average

Local Kernel Regression



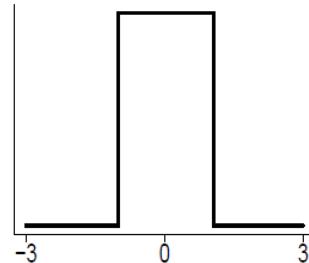
- Nonparametric estimator akin to kNN
- Nadaraya-Watson Kernel Estimator

$$\hat{f}_n(X) = \sum_{i=1}^n w_i Y_i \quad \text{Where} \quad w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

- Weight each training point based on distance to test point
- Boxcar kernel yields local average

boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



$$K(x) \geq 0,$$

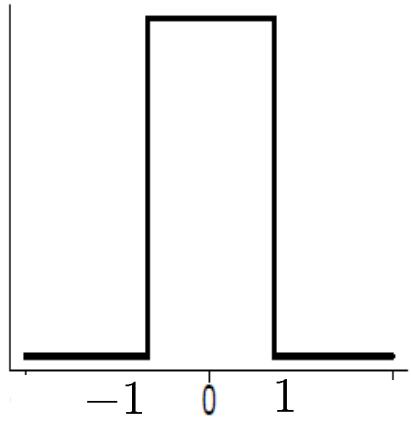
$$\int K(x)dx = 1$$

Kernels

$$K\left(\frac{X_j - x}{\Delta}\right)$$

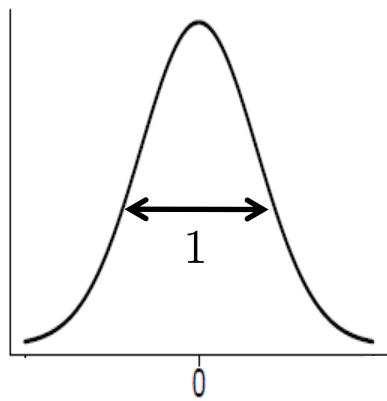
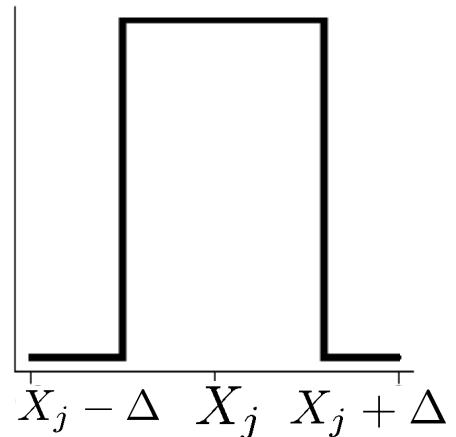
boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



Gaussian kernel :

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$



Choice of kernel bandwidth h

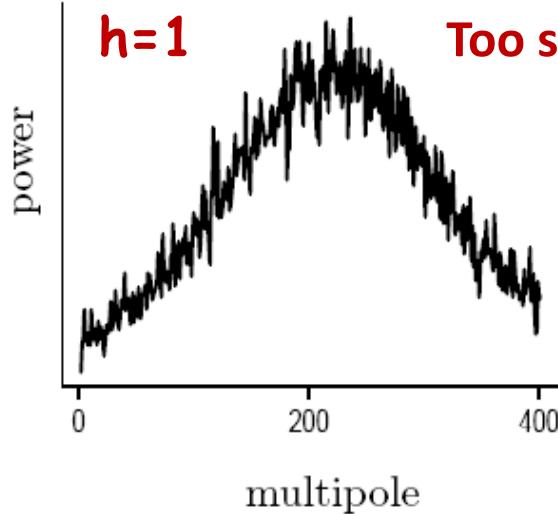
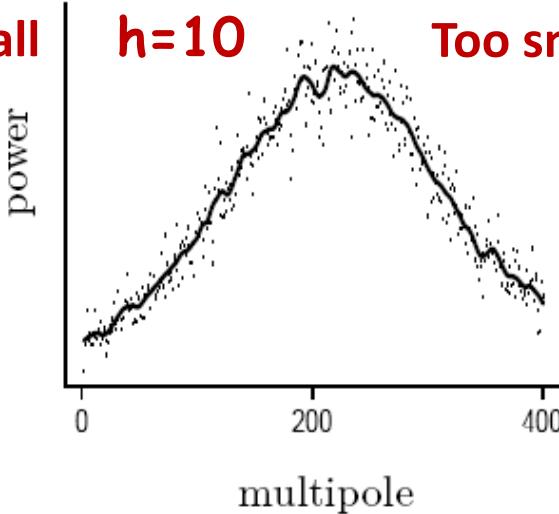
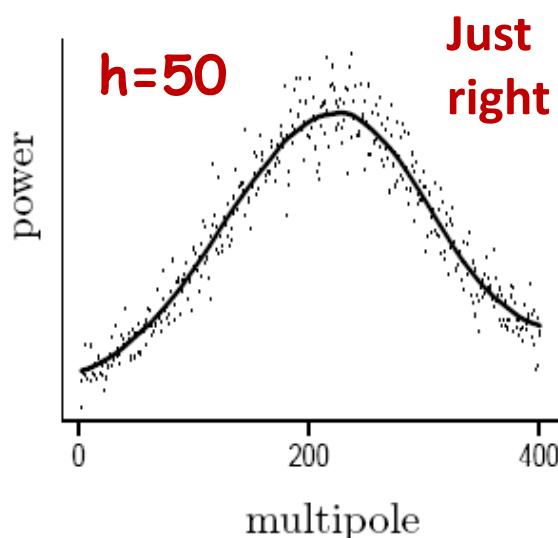
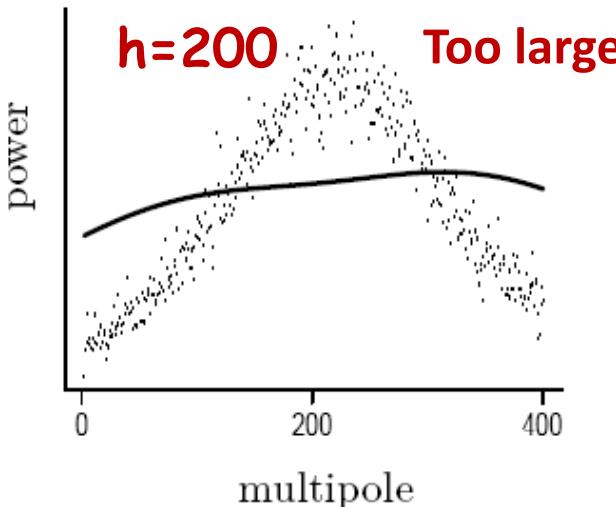


Image Source:
Larry's book – All
of Nonparametric
Statistics

Choice of kernel is
not that important



Kernel Regression as Weighted Least Squares

$$\min_f \sum_{i=1}^n w_i (f(X_i) - Y_i)^2 \quad w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

Weighted Least Squares

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set $f(X_i) = \beta$ (a constant)

Kernel Regression as Weighted Least Squares

set $f(X_i) = \beta$ (a constant)

$$\min_{\beta} \sum_{i=1}^n w_i (\beta - Y_i)^2$$

constant

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^n w_i (\beta - Y_i) = 0$$

Notice that $\sum_{i=1}^n w_i = 1$

$$\Rightarrow \hat{f}_n(X) = \hat{\beta} = \sum_{i=1}^n w_i Y_i$$

Local Linear/Polynomial Regression

$$\min_f \sum_{i=1}^n w_i (f(X_i) - Y_i)^2 \quad w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

i.e. set $f(X_i) = \beta_0 + \beta_1(X_i - X) + \frac{\beta_2}{2!}(X_i - X)^2 + \dots + \frac{\beta_p}{p!}(X_i - X)^p$
(local polynomial of degree p around X)

What you should know

Linear Regression

Least Squares Estimator

Normal Equations

Gradient Descent

Probabilistic Interpretation (connection to MCLE)

Regularized Linear Regression (connection to MCAP)

Ridge Regression, Lasso

Beyond Linear

Polynomial regression, Regression with Non-linear features, Bias-variance tradeoff, Kernelized ridge regression, Local Kernel Regression and Weighted Least Squares