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Linear Regression
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- Class of Linear functions

b1 - intercept

b2 = slopeUni-variate case:

where                                                     ,

Multi-variate case: 1

Least Squares Estimator



Least Squares Estimator
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f(Xi) = Xi�



Least Square solution satisfies Normal 
Equations
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If                  is invertible,

1) If dimension p not too large, analytical solution:

p x p p x1 p x1

gives

90O

Y
Space spanned by data 
points (rows of A)

0



Least Square solution satisfies Normal 
Equations
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If                  is invertible,

1) If dimension p not too large, analytical solution:

2)  If dimension p is large, computing inverse is expensive O(p3)
Gradient descent since objective is convex (ATA 0)

p x p p x1 p x1

gives



Least Square solution satisfies Normal 
Equations
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When is                    invertible ? 
Recall: Full rank matrices are invertible. What is rank of                 ? 

p x p p x1 p x1

Rank                 = number of non-zero eigenvalues of                  = number 
of non-zero singular values of A <= min(n,p) since A is n x p

So, rank                , r <= min(n,p) not invertible if r < p (e.g. n < p 
i.e. high-dimensional setting)



Least Square solution satisfies Normal 
Equations
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p x p p x1 p x1

If , then normal equations 

r equations in p unknowns. Under-determined if r < p, hence no 
unique solution.

A = USV>

When is                    invertible ? 
Recall: Full rank matrices are invertible. What is rank of                 ? 

S - r x r r x p p x 1 r x 1
(SV>)�̂ = (U>Y)
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Regularized Least Squares

What if                   is not invertible ? 

r equations , p unknowns – underdetermined system of linear equations
many feasible solutions

Need to constrain solution further 

e.g. bias solution to “small” values of b (small changes in input don’t 
translate to large changes in output) 

�̂MAP = (A>A+ �I)�1A>Y

(A>A+ �I)Is invertible ? 

� � 0

Ridge Regression
(l2 penalty)
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Understanding regularized Least Squares

Ridge Regression: 

βs with constant J(β)
(level sets of J(β))

βs with constant l2 norm
(level sets of pen(b))

β2

β1

Unregularized Least Squares solution
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Regularized Least Squares

What if                   is not invertible ? 

Lasso
(l1 penalty)

r equations , p unknowns – underdetermined system of linear equations

many feasible solutions

Need to constrain solution further 

e.g. bias solution to “small” values of b (small changes in input don’t 

translate to large changes in output)

Many b can be zero – many inputs are irrelevant to prediction in high-

dimensional settings (typically intercept term not penalized)

� � 0

Ridge Regression
(l2 penalty)
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Regularized Least Squares

What if                   is not invertible ? 

Lasso
(l1 penalty)

r equations , p unknowns – underdetermined system of linear equations
many feasible solutions

Need to constrain solution further 

e.g. bias solution to “small” values of b (small changes in input don’t 
translate to large changes in output)

� � 0

Ridge Regression
(l2 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages 
available)



Ridge Regression vs Lasso

34

Ridge Regression: Lasso:

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high-dimensional problems – don’t have to store all coordinates, 
interpretable solution!

βs with 
constant 
l1 norm

Ideally l0 penalty, 
but optimization 
becomes non-convex

βs with 
constant 
l0 norm

βs with constant J(β)
(level sets of J(β))

βs with 
constant 
l2 norm

β2

β1



Matlab example
clear all
close all

n = 80;     % datapoints
p = 100;   % features
k = 10;      % non-zero features

rng(20);
X = randn(n,p);
weights = zeros(p,1);
weights(1:k) = randn(k,1)+10;
noise = randn(n,1) * 0.5;
Y = X*weights +  noise;

Xtest = randn(n,p);
noise = randn(n,1) * 0.5;
Ytest = Xtest*weights + noise;

lassoWeights = lasso(X,Y,'Lambda',1, 
'Alpha', 1.0);
Ylasso = Xtest*lassoWeights;
norm(Ytest-Ylasso)

ridgeWeights = lasso(X,Y,'Lambda',1, 
'Alpha', 0.0001);
Yridge = Xtest*ridgeWeights;
norm(Ytest-Yridge)

stem(lassoWeights)
pause
stem(ridgeWeights)



Matlab example
Test MSE = 33.7997 Test MSE = 185.9948

Lasso Coefficients Ridge Coefficients
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Regularized Least Squares –
connection to MLE and MAP 
(Model-based approaches)



Least Squares and M(C)LE
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Intuition: Signal plus (zero-mean) Noise model

Least Square Estimate is same as Maximum Conditional 
Likelihood Estimate under a Gaussian model !

Conditional log likelihood

= X�⇤

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized Least Squares and M(C)AP
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What if                   is not invertible ? 

Conditional log likelihood log prior

I) Gaussian Prior

0

Ridge Regression

b�MAP = (AAA>AAA+ �III)�1AAA>YYY

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized Least Squares and M(C)AP
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What if                   is not invertible ? 

Prior belief that β is Gaussian with zero-mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Conditional log likelihood log prior

p({Yi}ni=1|�,�2, {Xi}ni=1)



Regularized Least Squares and M(C)AP
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What if                   is not invertible ? 

Prior belief that β is Laplace with zero-mean biases solution to “sparse” β

Lasso

II) Laplace Prior

Conditional log likelihood log prior

p({Yi}ni=1|�,�2, {Xi}ni=1)




