Regularized Linear Regression

Aarti Singh

Machine Learning 10-315
Oct 28, 2019

ACHI



Linear Regression

~ 1 n
for = arg— Z (f(X;) — Y};)Q Least Squares Estimator
=1

Fr - Class of Linear functions
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Uni-variate case: o« s «* 2 =slope
[ ] [ ]

f(X) =71+ BxX ,Bl-intercept‘[

Multi-variate case:

1
F(X)=XB  where X=[)¢/A...X<p>], B=1[81...06p]"
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Least Squares Estimator
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Least Square solution satisfies Normal
Equations

0J(B) —0 gives (ATA)B =ATY
o8 |3 px

pxp pxl

f(ATA) is invertible,

1) If dimension p not too large, analytical solution:

8= (ATA) 1ATY fl(x)=xp

Space spanned by data
points (rows of A)

900
(AB = Proj(Y)



Least Square solution satisfies Normal
Equations

0J(B) —0 gives (ATA)B =ATY
o8 |3 px

pxp pxl

f(ATA) is invertible,

1) If dimension p not too large, analytical solution:

8= (ATA) 1ATY fl(x)=xp

2) If dimension p is large, computing inverse is expensive O(p3)
Gradient descent since objective is convex (ATA> 0)

1 _ ot @0J(B)
B = 6-3 53 |,

= gt —a AT(AB — Y) 27




Least Square solution satisfies Normal

Equations
(ATA)BE=ATY

pxp pxl p x1

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of(ATA) ?

Rank(ATA) = number of non-zero eigenvalues of (ATA)= number
of non-zero singular values of A <= min(n,p) since Aisnxp

So, rank(ATA), r <= min(n,p) not invertible ifr<p (e.g. n<p
i.e. high-dimensional setting)

28



Least Square solution satisfies Normal
Equations

(ATA)BE=ATY
pxp pxl p x1

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of (A1 A)?

if A = USV ! then normal equations (SV )3 = (UTY)

S-rxr rxp pxl1 rxl

r equations in p unknowns. Under-determined if r < p, hence no
unique solution.
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Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions

Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. L Ridge Regression
Bmap = arg mﬁln i;(yi — X;8)% 4+ )\|8|3 (12 genal‘rgy)

—argmin (A5 - Y)T(AB - Y) +[5]3 A0

Buiap = (ATA +AI)TTATY
s (ATA 4+ )\I) invertible ? .



Understanding regularized Least Squares
min(AS - Y)" (A8 - Y) + Apen(8) = min J(5) + Apen(5)

Ridge Regression:

pen(8) = |16

Bs with constant J(8)
(level sets of J(B))

,82 ’ Unregularized Least Squares solution
A

f3s with constant 12 norm
(level sets of pen(f3))

\/ ’
N |




Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

I”

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. L Ridge Regression
Bmap = arg mﬁm Z (Y; — X;8)° + N8I3 (12 genal’rgy)

1—=1
~ n A>0
Buap = arg min SN (Y — X;8)% + A|18ll1 Lasso -
=1 (11 penalty)

Many [3 can be zero — many inputs are irrelevant to prediction in high-
dimensional settings (typically intercept term not penalized) .



Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

~ " Ridge Regression
3 — Mmi Zy._X.32| 3(12 g g

1—=1
~ n A>0
Buap = arg min SN (Y — X;8)% + A|18ll1 Lasso -
i=1 (11 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages
available) 33



Ridge Regression vs Lasso
mﬂin(Aﬁ “Y)T(AB - Y) + Apen(B) = mﬁin J(B) + Apen(B)

Ridge Regression: Lasso: Ideally 10 penalty,

pen(3) = |85 pen(3) = ||8|1 but optimization
becomes non-convex

s with !

Bs with constant J(8)
(level sets of J(B))

Bs with B2 Bs with
constant constant constant
12 norm \[ 11 norm 10 norm
\J . N .

Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates,

interpretable solution! 34



Matlab example

clear all lassoWeights = lasso(X,Y,'Lambda’, 1,

close all 'Alpha’, 1.0);
Ylasso = Xtest*lassoWeights;

n=80; % datapoints norm(Ytest-Ylasso)

p=100; % features

k=10; % non-zero features ridgeWeights = lasso(X,Y,'Lambda’,1,
'Alpha’, 0.0001);

rng(20); Yridge = Xtest*ridgeWeights;

X =randn(n,p); norm(Ytest-Yridge)

weights = zeros(p,1);

weights(1:k) = randn(k,1)+10; stem(lassoWeights)

noise = randn(n,1) * 0.5; pause

Y = X*weights + noise; stem(ridgeWeights)

Xtest = randn(n,p);
noise = randn(n,1) * 0.5;
Ytest = Xtest*weights + noise;



Matlab example

Test MSE = 33.7997

Lasso Coefficients

Test MSE = 185.9948

_ Ridge Coefficients




Regularized Least Squares —
connection to MLE and MAP
(Model-based approaches)



Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model F(X) = X3

Y=f(X)+e=XB"+e¢

e ~N(0,0°I) Y ~ N(XB*,c°I)

;;;eeee:ee::e: 00-0-0-000-0-0-00—009
BumLe = arg max log p({Yi} 118, 0%, { X))
| |

Y
Conditional log likelihood

n
=argmin 3 (X6 - Y;)? =3
1=1

Least Square Estimate is same as Maximum Conditional
Likelihood Estimate under a Gaussian model ! 38



Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Buap = arg maxlog p({Y;}iL, |8, 0%, {X;}[+1og p(6)
\ J J
Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
i=1
constant(c?, 72)
Baniap = (ATA+A)TIATY
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Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

BI\/IAP — arg mﬁax log _‘p({Yi}?:ﬂﬁa 027 {Xq;}‘?’;HOQ p(B)
\ J J

Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” B 40




Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Bmap = arg max log p({Yi} 1I5, 2 (X" +|09p(6)

Y
Conditional Iog likelihood log prior

Il) Laplace Prior

11d

B; ~ Laplace(0,t) p(B;) e~ 1Gil/t

n
Buar = argmin 3 (¥; - X;3)% + M|Bl1 Lasso
1=1
constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “sparse” 41






