
k-NN (k-Nearest Neighbor) 
Classifier

Aarti Singh

Machine Learning 10-315
Oct 14 , 2019



k-NN classifier

2

Sports

Science

Arts



k-NN classifier

3

Sports

Science

Arts

Test document



k-NN classifier (k=5)
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What should we predict? … Average? Majority? Why?



k-NN classifier
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• Optimal Classifier:

• k-NN Classifier:

# total training pts of class y

# training pts of class y
amongst k NNs of x

P (x|y)

bPkNN (x|y)

bPkNN (x|y) = ky
ny



1-Nearest Neighbor (kNN) classifier 
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2-Nearest Neighbor (kNN) classifier 
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3-Nearest Neighbor (kNN) classifier 
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5-Nearest Neighbor (kNN) classifier 
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What is the best k?
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K = 1

Voronoi
Diagram

1-NN classifier decision boundary

As k increases, boundary becomes smoother (less jagged).



What is the best k?
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Approximation vs. Stability (aka Bias vs Variance) Tradeoff

• Larger K => predicted label is more stable 
• Smaller K => predicted label can approximate best classifier 

well



Non-parametric methods

Aka Instance-based/Memory-based learners

Ø Decision Trees

Ø k-Nearest Neighbors



Parametric methods
• Assume some model (Gaussian, Bernoulli, Multinomial, 

logistic, network of logistic units, Linear, Quadratic) with fixed 

number of parameters

– Gaussian Bayes, Naïve Bayes, Logistic Regression, 
Perceptron

• Estimate parameters (µ,s2,q,w,b) using MLE/MAP and plug in

• Pro – need few data points to learn parameters

• Con – Strong distributional assumptions, not satisfied in 

practice
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Non-Parametric methods
• Typically don’t make any distributional assumptions
• As we have more data, we should be able to learn more 

complex models
• Let number of parameters scale with number of training data 

• Some nonparametric methods 
– Decision Trees
– k-NN (k-Nearest Neighbor) Classifier
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Summary
• Parametric vs Nonparametric approaches
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Ø Nonparametric models place very mild assumptions on 
the data distribution and provide good models for 
complex data
Parametric models rely on very strong (simplistic) 
distributional assumptions

Ø Nonparametric models requires storing and computing 
with the entire data set. 
Parametric models, once fitted, are much more efficient 
in terms of storage and computation.



Judging Overfitting
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• A good machine learning algorithm
– Does not overfit training data
– Generalizes well to test data

W
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t
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Training Data vs. Test Data
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Test data



Training error
• Training error of a classifier f

Training Data

• What about test error? 
Can’t compute it.

• How can we know classifier is not overfitting?
Hold-out or Cross-validation
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Hold-out method

Can judge test error by using an independent sample of data.

Hold – out procedure:
n data points available

1) Randomly split into two sets (preserving label proportion):    
Training dataset Validation/Hold-out dataset

often m = n/2
2) Train classifier on DT. Report error on validation dataset DV.

Overfitting if validation error is much larger than training error



Training vs. Validation Error

Training error is no longer a 
good indicator of validation or test error 

fixed # training data

Training error

Validation error

Model



Hold-out method

Drawbacks:

§ May not have enough data to afford setting one subset 
aside for getting a sense of generalization abilities 

§ Validation error may be misleading (bad estimate of test 
error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of 
sub-sampling methods at the expense of more 
computation.



Cross-validation
K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error 
on remaining partition (rotating validation partition on each run).

Report average validation error

validation

Run 1

Run 2

Run K

training



Cross-validation
Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions 
Equivalently, train on n-1 samples and validate on only one 
sample per run for n runs

Run 1

Run 2

Run K

training validation



Cross-validation
Random subsampling

Randomly subsample a fixed fraction αn (0< α <1) of the dataset 
for validation.
Compute validation error with remaining data as training data.
Repeat K times
Report average validation error

Run 1

Run 2

Run K

training validation



Practical Issues in Cross-validation
How to decide the values for K and α ?
§ Large K

+ Validation error can approximate test error well
- Observed validation error will be unstable (few validation pts)
- The computational time will be very large as well (many 
experiments)

§ Small K
+ The # experiments and, therefore, computation time are 
reduced
+ Observed validation error will be stable (many validation pts)
- Validation error cannot approximate test error well

Common choice: K = 10, a = 0.1 J



Model selection
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Effect of Model Complexity
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Can we select good models using hold-out or cross-validation?

Training error

Validation error

Model

fixed # training data



Examples of Model Spaces
Model Spaces with increasing complexity:

• Nearest-Neighbor classifiers with increasing neighborhood sizes 
k = 1,2,3,…

Small neighborhood => Higher complexity

• Decision Trees with increasing depth k or with k leaves
Higher depth/ More # leaves => Higher complexity

• Neural Networks with increasing layers or nodes per layer
More layers/Nodes per layer => Higher complexity

• MAP estimates with stronger priors (larger hyper-parameters 
βH, βT for Beta distribution or smaller variance for Gaussian prior)

How can we select the right complexity model ?



• Train models of different complexities and evaluate their 
validation error using hold-out or cross-validation

• Pick model with smallest validation error (averaged over 
different runs for cross-validation)
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Model selection using Hold-
out/Cross-validation



load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Defaulty MinLeafSize = 1
tc = fitctree(X,Y);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel) 30

Validation error =  0.1254



load ionosphere

% UCI dataset

% 34 features, 351 samples

% binary classification

rng(100)

%Defaulty MinLeafSize = 1

tc = fitctree(X,Y, 'MinLeafSize’,2);

cvmodel = crossval(tc);

view(cvmodel.Trained{1},'Mode','graph')

kfoldLoss(cvmodel)
31

Validation error = 0.1168



load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Defaulty MinLeafSize = 1
tc = fitctree(X,Y, 'MinLeafSize',10);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel) 32

Validation error = 0.1339
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fixed # training data

Validation error

MinLeafSize 1MinLeafSize 2MinLeafSize 10

0.1254

0.1168

0.1339

Training error


