## Boosting

### Can we make dumb learners smart?

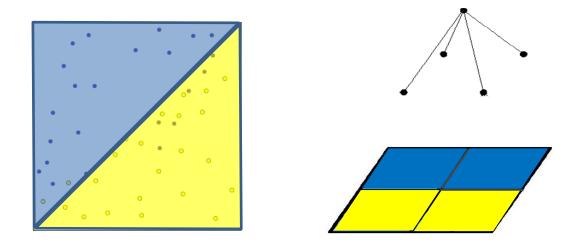
Aarti Singh

Machine Learning 10-315 Oct 9, 2019

Slides Courtesy: Carlos Guestrin, Freund & Schapire



### Why boost weak learners?


**Goal:** Automatically categorize type of call requested (Collect, Calling card, Person-to-person, etc.)

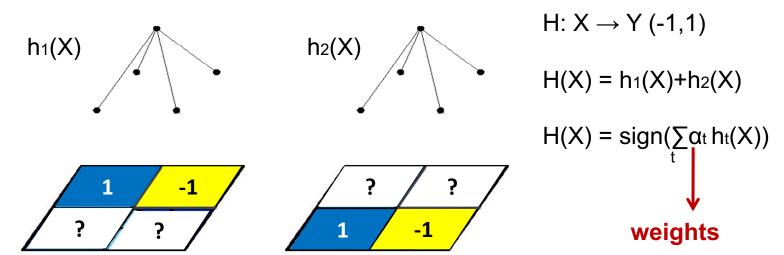
- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)

- Easy to find "rules of thumb" that are "often" correct.
   E.g. If 'card' occurs in utterance, then predict 'calling card'
- Hard to find single highly accurate prediction rule.

## Fighting the bias-variance tradeoff

 Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)




Are good ⓒ - don't usually overfit

Are bad ఄ - can't solve hard learning problems

- Can we make weak learners always good????
  - No!!! But often yes...

## **Voting (Ensemble Methods)**

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
  - Classifiers that are most "sure" will vote with more conviction
  - Classifiers will be most "sure" about a particular part of the space
  - On average, do better than single classifier!



### **Voting (Ensemble Methods)**

- Instead of learning a single (weak) classifier, learn many weak
   classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
  - Classifiers that are most "sure" will vote with more conviction.
  - Classifiers will be most "sure" about a particular part of the space
  - On average, do better than single classifier!
- But how do you ????
  - force classifiers h<sub>t</sub> to learn about different parts of the input space?
  - weigh the votes of different classifiers?  $\alpha_t$

### **Boosting** [Schapire'89]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t:
  - weight D<sub>t</sub>(i) for each training example i, based on how incorrectly it was classified
  - Learn a weak hypothesis h<sub>t</sub>
  - A weight for this hypothesis  $\alpha_t$
- Final classifier:  $H(X) = sign(\sum \alpha_t h_t(X))$
- Practically useful
- Theoretically interesting

### Learning from weighted data

- Consider a weighted dataset
  - D(i) weight of i th training example  $(\mathbf{x}^i, \mathbf{y}^i)$
  - Interpretations:
    - *i* th training example counts as D(i) examples
    - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, i th training example counts as D(i) "examples"
  - e.g., in MLE redefine Count(Y=y) to be weighted count

#### **Unweighted data**

$$Count(Y=y) = \sum_{i=1}^{m} \mathbf{1}(Y^{i}=y)$$

$$Count(Y=y) = \sum_{i=1}^{m} D(i)\mathbf{1}(Y^{i}=y)$$

### AdaBoost [Freund & Schapire'95]

```
Given: (x_1, y_1), \dots, (x_m, y_m) where x_i \in X, y_i \in Y = \{-1, +1\}
Initialize D_1(i) = 1/m. Initially equal weights
For t = 1, ..., T:
```

- Train weak learner using distribution  $D_t$ . Naïve bayes, decision stump
- Get weak classifier  $h_t: X \to \mathbb{R}$ .
- Choose  $\alpha_t \in \mathbb{R}$ . Magic (+ve)
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 if wrong on pt i

**Increase weight**  $y_i h_t(x_i) = -1 < 0$ 

where  $Z_t$  is a normalization factor

### AdaBoost [Freund & Schapire'95]

```
Given: (x_1, y_1), \ldots, (x_m, y_m) where x_i \in X, y_i \in Y = \{-1, +1\}
Initialize D_1(i) = 1/m. Initially equal weights
For t = 1, \ldots, T:
```

- Train weak learner using distribution  $D_t$ . Naïve bayes, decision stump
- Get weak classifier  $h_t: X \to \mathbb{R}$ .
- Choose  $\alpha_t \in \mathbb{R}$ . Magic (+ve)
- Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Increase weight if wrong on pt i yi ht(xi) = -1 < 0

where  $Z_t$  is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Weights for all pts must sum to 1 ∑ Dt+1(i) = 1

### AdaBoost [Freund & Schapire'95]

```
Given: (x_1, y_1), \ldots, (x_m, y_m) where x_i \in X, y_i \in Y = \{-1, +1\}
Initialize D_1(i) = 1/m. Initially equal weights
For t = 1, ..., T:
```

- Train weak learner using distribution  $D_t$ . Naïve bayes, decision stump
- Get weak classifier  $h_t: X \to \mathbb{R}$ .
- Choose  $\alpha_t \in \mathbb{R}$ . Magic (+ve)
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 if wrong on pt i

**Increase weight**  $y_i h_t(x_i) = -1 < 0$ 

where  $Z_t$  is a normalization factor

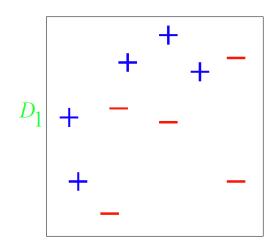
Output the final classifier:

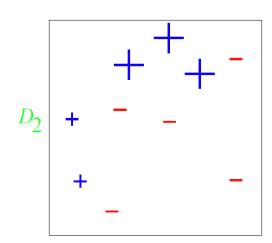
$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

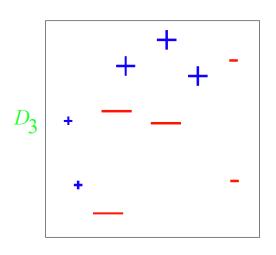
### What $\alpha_t$ to choose for hypothesis $h_t$ ?

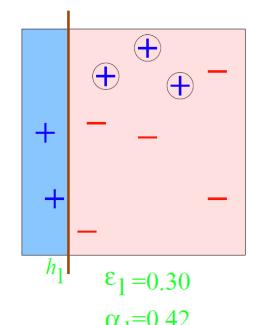
Weight Update Rule:

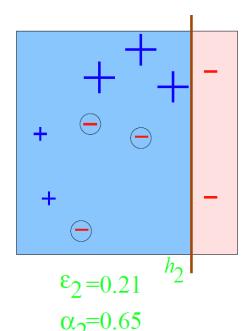
$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

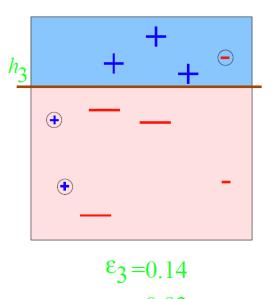

$$lpha_t = rac{1}{2} \ln \left( rac{1 - \epsilon_t}{\epsilon_t} 
ight)$$
 [Freund & Schapire'95]


#### Weighted training error

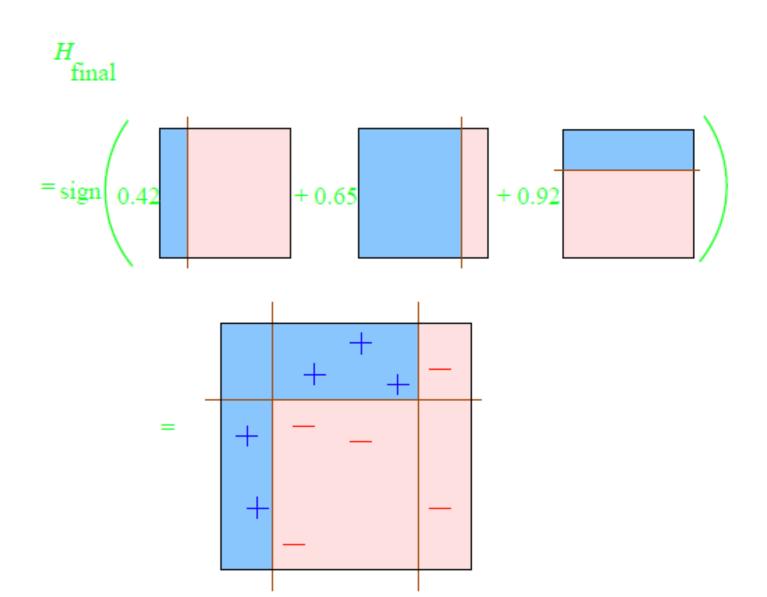

$$\epsilon_t = P_{i \sim D_t(i)}[h_t(\mathbf{x}^i) \neq y^i] = \sum_{i=1}^m D_t(i) \delta(h_t(x_i) \neq y_i)$$
Does ht get ith point wrong


$$\epsilon_t$$
 = 0 if h<sub>t</sub> perfectly classifies all weighted data pts  $\alpha_t$  =  $\infty$ 
 $\epsilon_t$  = 1 if h<sub>t</sub> perfectly wrong => -h<sub>t</sub> perfectly right  $\alpha_t$  = - $\infty$ 
 $\epsilon_t$  = 0.5  $\alpha_t$  = 0


### **Boosting Example** (Decision Stumps)

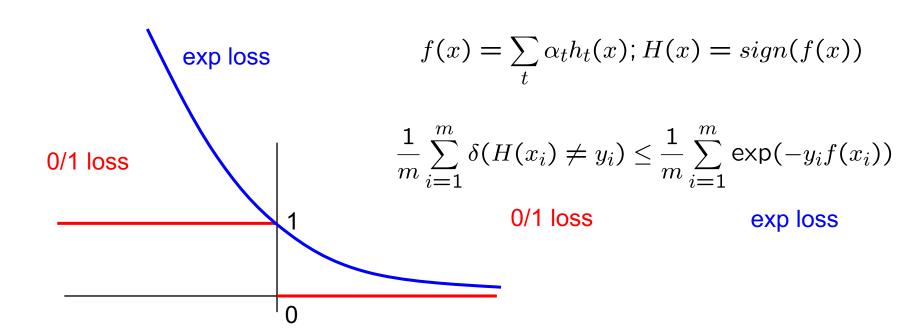









### **Boosting Example** (Decision Stumps)



### **Analysis for Boosting**

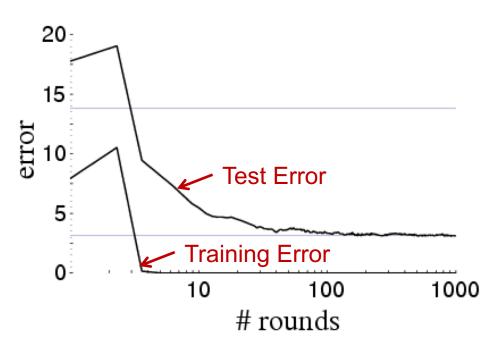
• Choice of  $\alpha_t$  and hypothesis  $h_t$  obtained by coordinate descent on exploss (convex upper bound on 0/1 loss)



### **Analysis for Boosting**

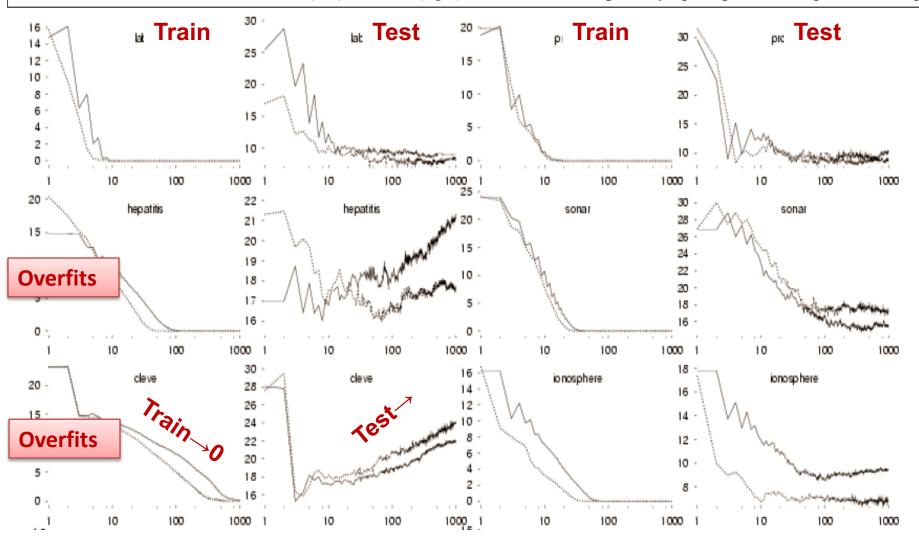
#### Analysis reveals:

• If each weak learner  $h_t$  is slightly better than random guessing ( $\varepsilon_t$  < 0.5), then training error of AdaBoost decays exponentially fast in number of rounds T.


$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_t)^2\right)$$

**Training Error** 

#### What about test error?


## **Boosting results – Digit recognition**

[Schapire, 1989]



- Boosting often,
  - Robust to overfitting
  - Test set error decreases even after training error is zero
- If margin between classes is large, subsequent weak learners agree and hence more rounds does not necessarily imply that final classifier is getting more complex.

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]



Boosting can overfit if margin between classes is too small (high label noise) or weak learners are too complex.

### **Boosting and Logistic Regression**

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \qquad f(x) = w_0 + \sum_j w_j x_j$$

And tries to maximize data likelihood:

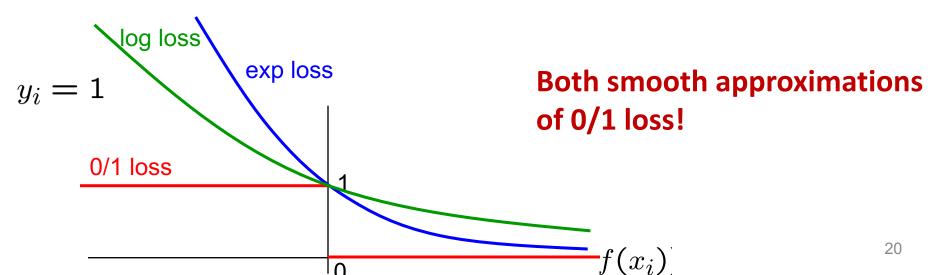
$$P(\mathcal{D}|f) \stackrel{\text{iid}}{=} \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))}$$

Equivalent to minimizing log loss

$$-\log P(\mathcal{D}|f) = \sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

### **Boosting and Logistic Regression**

Logistic regression equivalent to minimizing log loss


$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \qquad f(x) = w_0 + \sum_{i=1}^{m} w_i x_i$$

Boosting minimizes similar loss function!!

$$\frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

Weighted average of weak learners



### **Boosting and Logistic Regression**

#### Logistic regression:

Minimize log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_{j} x_{j}$$

where  $x_j$  predefined features

(linear classifier)

 Jointly optimize over all weights wo, w1, w2...

#### **Boosting:**

Minimize exp loss

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

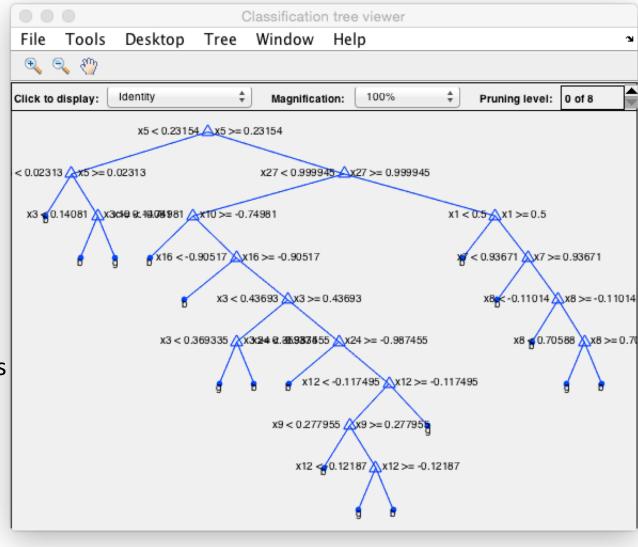
$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where  $h_t(x)$  defined dynamically to fit data (not a linear classifier)

• Weights  $\alpha_t$  learned per iteration t incrementally

### **Hard & Soft Decision**

Weighted average of weak learners 
$$f(x) = \sum_{t} \alpha_t h_t(x)$$


Hard Decision/Predicted label: 
$$H(x) = sign(f(x))$$

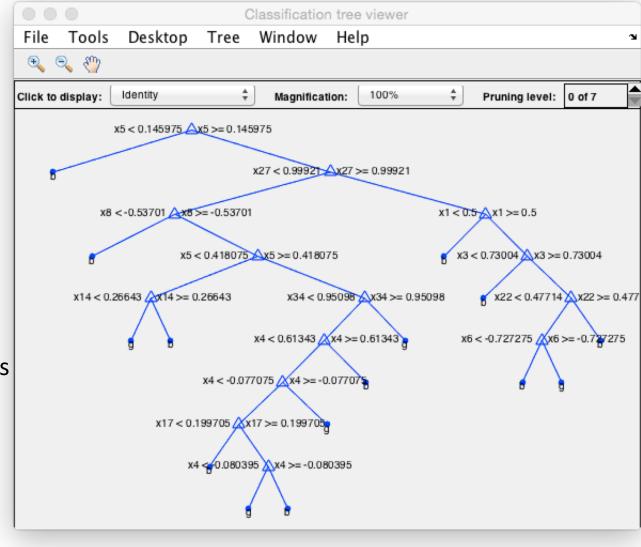
$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$

# Matlab exampledecision tree

load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize = 1
tc = fitctree(X,Y);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)



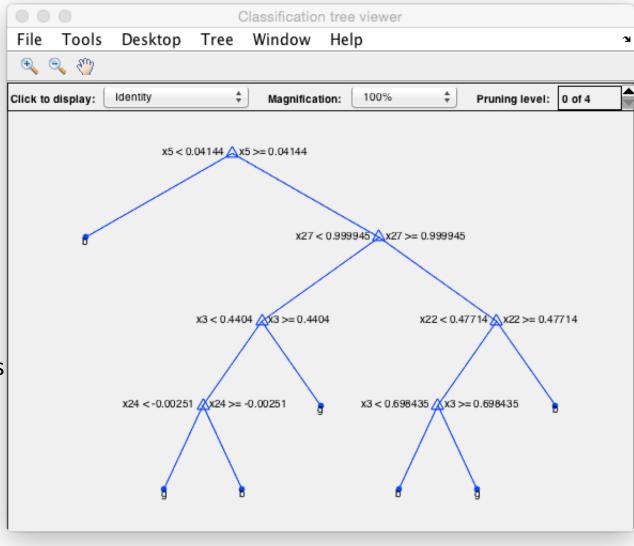

Validation error = 0.1254

# Matlab exampledecision tree

load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

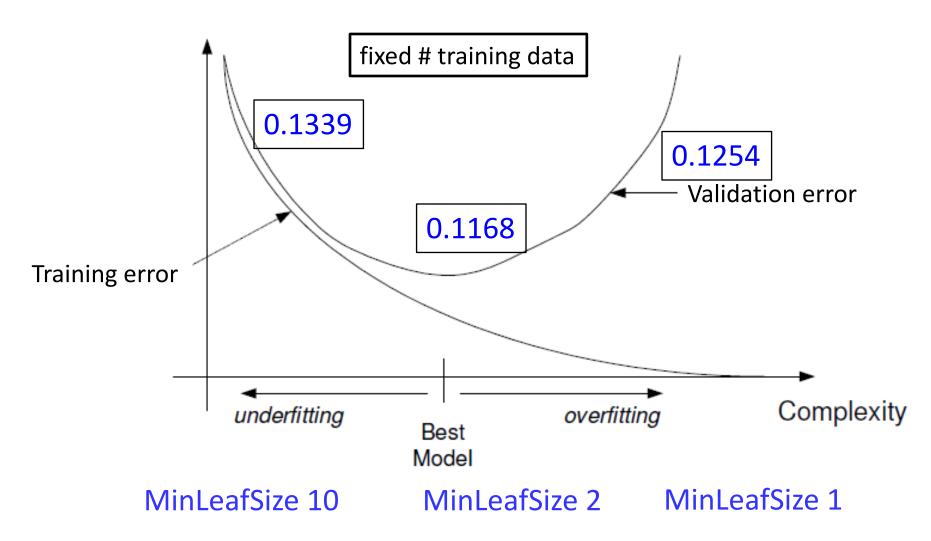
%Default MinLeafSize = 1

tc = fitctree(X,Y, 'MinLeafSize',2);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)




Validation error = 0.1168

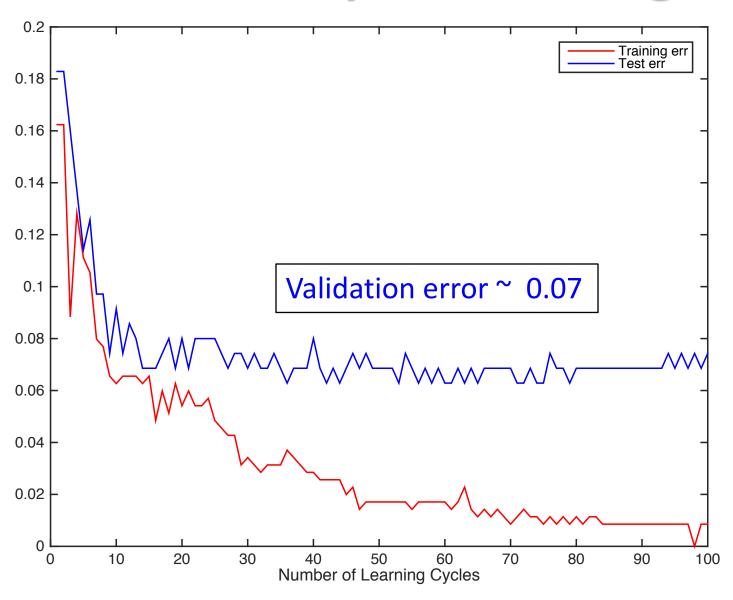
# Matlab exampledecision tree


load ionosphere
% UCI dataset
% 34 features, 351 samples
% binary classification
rng(100)

%Default MinLeafSize = 1
tc = fitctree(X,Y, 'MinLeafSize',10);
cvmodel = crossval(tc);
view(cvmodel.Trained{1},'Mode','graph')
kfoldLoss(cvmodel)



Validation error = 0.1339


### Matlab example – decision trees



### Matlab example - boosting

- % UCI dataset
- % 34 features, 351 samples
- % binary classification
- load ionosphere;
- rng(2); % For reproducibility
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
- rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');
- plot(rsLoss,'r');
- hold on
- ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
- 'Holdout',0.5);
- genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');
- plot(genError,'b');
- xlabel('Number of Learning Cycles');
- legend('Training err', 'Test err')

### Matlab example - boosting



### **Boosting Summary**

- Combine weak classifiers to obtain very strong classifier
  - Weak classifier slightly better than random on training data
  - Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
  - Similar loss functions
  - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
  - Boosted decision stumps!
  - Very simple to implement, very effective classifier