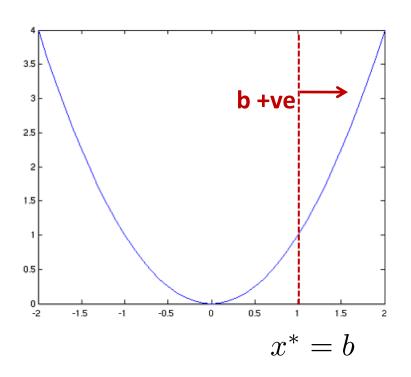
Kernels (SVMs, Logistic Regression)

Aarti Singh

Machine Learning 10-315 Oct 2, 2019

Constrained optimization – dual problem



Primal problem:

$$\min_{x} x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

If strong duality holds, then $d^* = p^*$ and x^* , α^* satisfy KKT conditions including

$$\alpha^*(x^*-b)=0$$

Dual problem:

max
$$_{\alpha}$$
 $d(\alpha)$ \rightarrow min $_{x} L(x,\alpha)$ s.t. $\alpha \geq 0$

Dual SVM – linearly separable case

n training points, d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where \mathbf{x}_i is a d-dimensional vector

• <u>Primal problem</u>: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features (d-dim problem)

• <u>Dual problem (derivation):</u>

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

 α - weights on training pts (n-dim problem)

Dual SVM – linearly separable case

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives $\alpha_j s \longrightarrow$

Use support vectors with $\alpha_k>0$ to compute b since constraint is tight $(w.x_k + b)y_k = 1$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

for any k where $\alpha_k > 0$

Dual SVM – non-separable case

Primal problem:

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b,\{\xi_j\}} \frac{1}{2} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_j \\ & \left(\mathbf{w}.\mathbf{x}_j + b \right) y_j \geq 1 - \xi_j, \ \forall j \\ & \xi_j \geq 0, \ \forall j \end{aligned}$$

Lagrange Multipliers

• Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_{\mathbf{j}}\}} L(\mathbf{w},b,\xi,\alpha,\mu) \\ s.t.\alpha_{j} &\geq \mathbf{0} \quad \forall j \\ \mu_{j} &\geq \mathbf{0} \quad \forall j \end{aligned}$$

Dual SVM – non-separable case

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\text{comes from } \frac{\partial L}{\partial \xi} = \mathbf{0} \qquad \begin{aligned} & \underbrace{\text{Intuition:}}_{\text{If } C \rightarrow \infty \text{, recover hard-margin SVM}} \end{aligned}$$

Dual problem is also QP Solution gives α_i s \longrightarrow

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

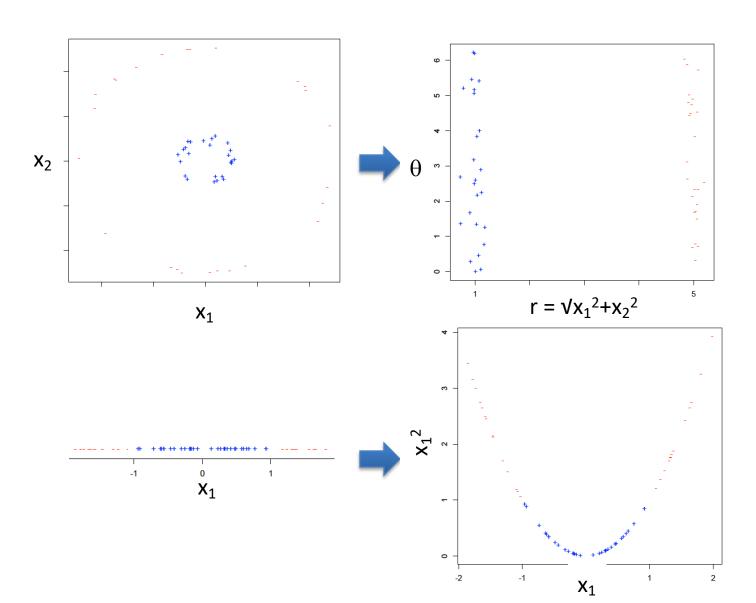
$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

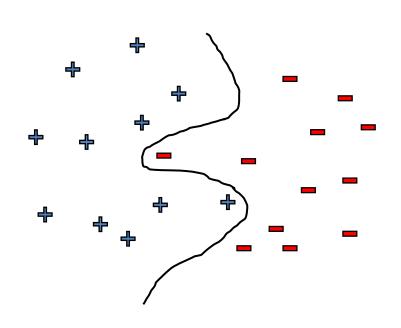
 There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)

• But, more importantly, the "kernel trick"!!!

Separable using higher-order features



What if data is not linearly separable?



Use features of features of features

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2,, \exp(x_1))$$

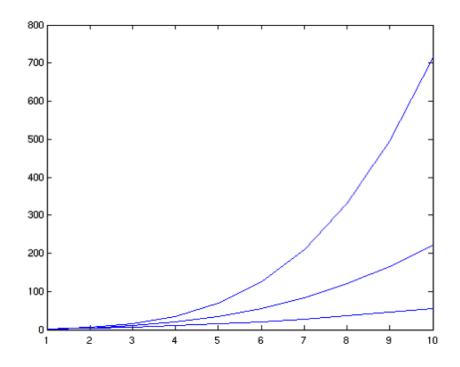
Feature space becomes really large very quickly!

Higher Order Polynomials

m – input features

d – degree of polynomial

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$$



grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

$$\mathbf{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C > \alpha_{i} > 0 \end{aligned}$$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(x)$ = polynomials of degree exactly d

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \cdot \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \ \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$
$$= (x_1z_1 + x_2z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

Finally: The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$?

Answer: Mercer kernels K

- K is continuous
- K is symmetric
- K is positive semi-definite, i.e. $\mathbf{x}^T \mathbf{K} \mathbf{x} \ge 0$ for all \mathbf{x}

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign($\mathbf{w}.\Phi(\mathbf{x})$ +b)

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

for any
$$k$$
 where $C>\alpha_k>0$

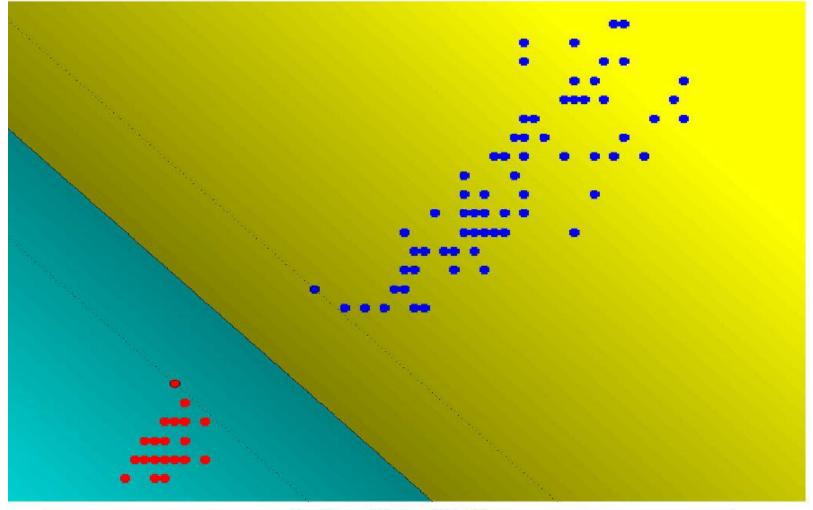
Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

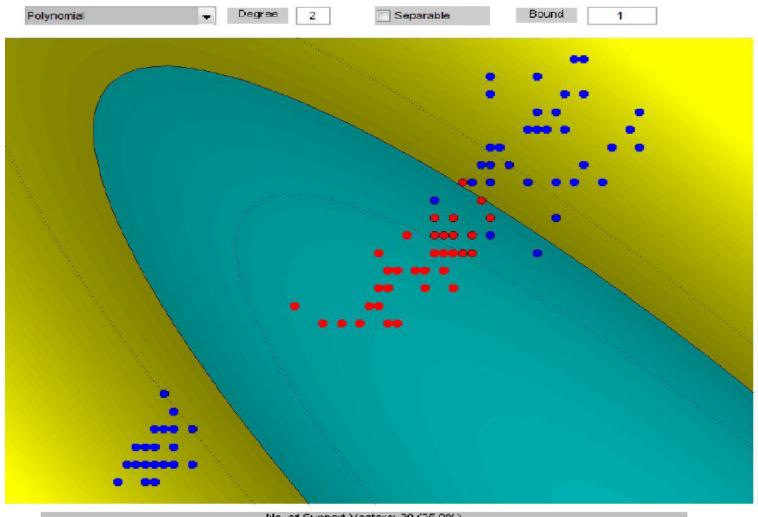
- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors $lpha_{
 m i}$
- At classification time, compute:

$$\begin{aligned} \mathbf{w} \cdot \Phi(\mathbf{x}) &= \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) \\ b &= y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i) \\ \text{for any } k \text{ where } C > \alpha_k > 0 \end{aligned} \qquad \text{Classify as} \qquad sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$

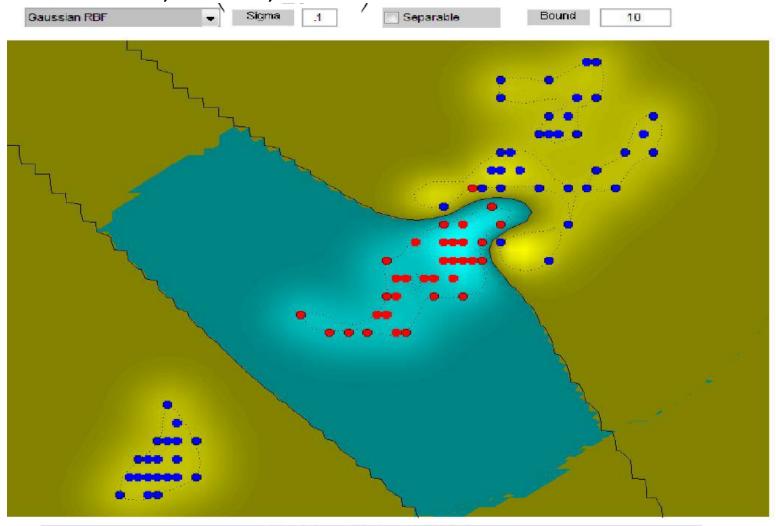
Iris dataset, 2 vs 13, Linear Kernel



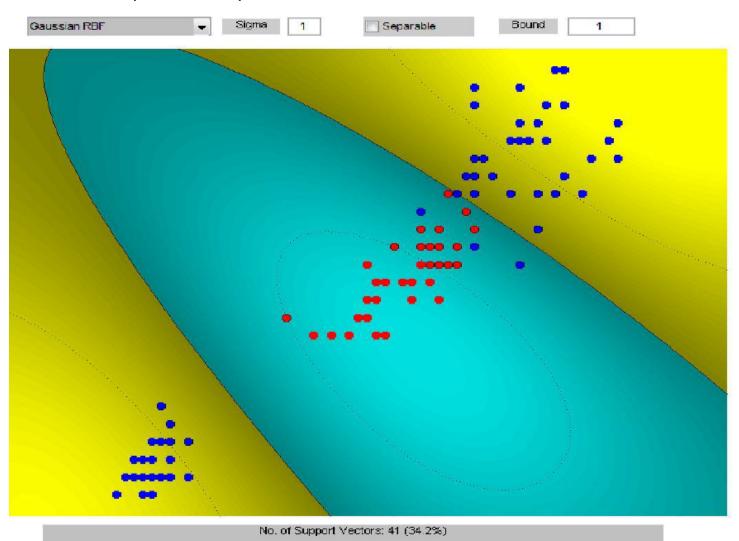
• Iris dataset, 1 vs 23, Polynomial Kernel degree 2



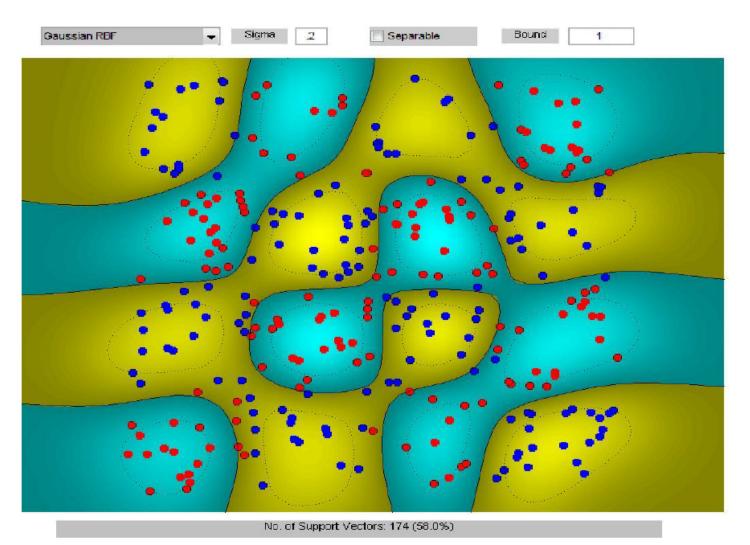
Iris dataset, 1 vs 23, Gaussian RBF kernel



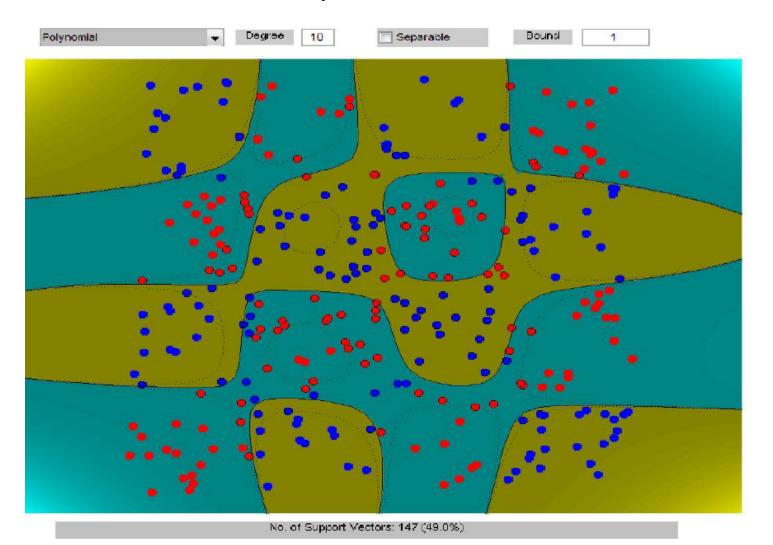
Iris dataset, 1 vs 23, Gaussian RBF kernel



Chessboard dataset, Gaussian RBF kernel



Chessboard dataset, Polynomial kernel



Corel Dataset

Air shows

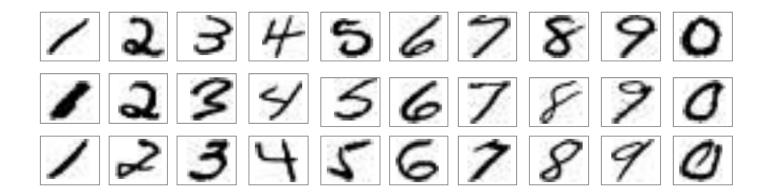
Bears

Horses

Corel Dataset

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
air-shows	1	31		1							1	1			
bears	2		26	2	2		2	1		1					
elephants	3		1	27				3						3	
tigers	4			1	32			1							
horses	5					34									
polar-bears	6						30					1		2	1
african-animals	7			1	1			30		1				1	
cheetahs	8						1		32			1			
eagles	9	1								33					
mountains	10	3								1	24	3	3		
fields	11			1				1			2	27	3		
deserts	12						2	1	1	2	1	3	24		
sunsets	13													34	
night scenes	14	1												2	31

USPS Handwritten digits



■ 1000 training and 1000 test instances

Results:

SVM on raw images ~97% accuracy

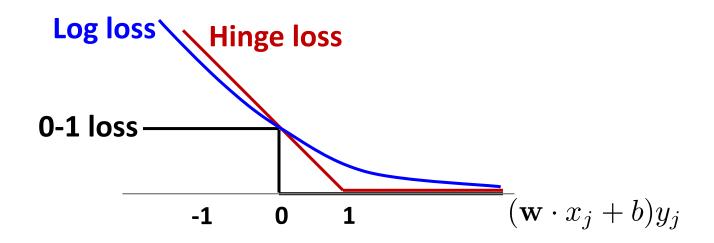
	SVMs	Logistic		
		Regression		
Loss function	Hinge loss	Log-loss		

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

<u>Logistic Regression</u>: <u>Log loss</u> (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$



	SVMs	Logistic
		Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

• Derive simple gradient descent rule on $\alpha_{\rm i}$

	Regression
Hinge loss	Log-loss
Yes!	Yes!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	Real probabilities

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs
- Dual SVM formulation
 - Easier to solve when dimension high d > n
 - Kernel Trick