Machine Learning - Intro

Aarti Singh

Machine Learning 10-315 Aug 26, 2019

Teaching team

Instructor:

Education Associate:

Aarti Singh

TAs:

Siddharth Ancha

Yue Wu

Other relevant people

- Admin Mary Stech (<u>mstech@andrew.cmu.edu</u>)
- Qatar instructor and TA:
 - Gianni Di Caro (gdicaro@cmu.edu)
 - Aliaa Essameldin (<u>aeahmed@andrew.cmu.edu</u>)

Logistics

Lectures: Mon, Wed 10:30-11:50 am HOA 160

Recitations: Fri 10:30-11:50 am HOA 160

Office hours: M, T, W, R – times and locations on course

webpage

Webpage: Syllabus, schedule of lectures, slides, policies,

office hours, HWs, projects, exams, ...

https://www.cs.cmu.edu/~aarti/Class/10315_Fall19

Piazza: discussion forum for students, announcements

piazza.com/cmu/fall2019/10315

Communication channel

- Ask questions in class!
- Office hours (M, T, W, R)
- Recitations (F)
- Note to instructors on Piazza
- DO NOT expect moderation on every question by instructors or TAs on Piazza discussion forum – discuss with class!

Grading

Grading

- 4 homework assignments $(4 \times 10\% = 40\%)$
- 4 QnAs (15%)
- 1 midterm, 1 final (both in class): (10+15 = 25%)
- Kaggle-style project (20%)
- Late days
 - total 4 across homeworks and QnAs
 - no late days for project

Homeworks & QnAs

- Collaboration
 - You may discuss the questions
 - Each student writes their own answers
 - Each student must write their own code for the programming part
 - Please don't search for answers on the web, Google, previous years' homeworks, etc.
 - please ask us if you are not sure if you can use a particular reference
 - list resources used (references, discussants) on top of submitted homework
- Homeworks are hard, start early ©
- Due on gradescope at 11:59 pm

Waitlist + Audits + Pass/Fail

Waitlist

we'll let everyone in as long as there is space in room wait to see how many students drop keep attending lectures and doing HW

Audits and Pass/Fail
 Audits NOT allowed

 Pass/Fail allowed

About the course

- Machine Learning Algorithms and Principles
 - Classification: Naïve Bayes, Logistic Regression, Neural Networks,
 Support Vector Machines, k-NN, Decision Trees, Boosting
 - Regression: Linear regression, Kernel regression, Nonparametric regression
 - Unsupervised methods: Kernel density estimation, k-means and hierarchical clustering, PCA, nonlinear dimensionality reduction
 - Core concepts: Probability, Optimization, Theory, Model selection, overfitting, bias-variance tradeoffs ...
- See tentative lecture schedule on webpage MAY CHANGE
- Material: Class slides + Reading material

Recommended textbooks

Textbooks (Recommended, not required):

Pattern Recognition and Machine Learning, Christopher Bishop Machine Learning: A probabilistic perspective, Kevin Murphy Machine Learning, Tom Mitchell

The elements of statistical learning: Data mining, inference and prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman

Related courses

Related courses – Intro to ML algorithms and principles

10-301 – Undergrad version for non-SCS majors

10-601 – Masters version

10-701 – PhD version

10-715 – PhD students doing research in machine learning (hardest, most mathematical)

Other related courses:

10-606, 10-607 – Math background for ML

10-605, 10-805 – Machine Learning with Large Datasets

11-663 – Machine Learning in Practice (ML software)

10-702, 10-704, 10-707, 10-708, 10-709, 15-859(B) — related advanced topics

Pre-requisites

Assume mathematical maturity

- Multivariate Calculus
 Derivatives, integrals of multi-variate functions
- Linear Algebra
 Matrix inversions, eigendecomposition, ...
- Basic Probability and Statistics
 Probability distributions discrete and continuous, Mean, Variance,
 Conditional probabilities, Bayes rule, Central limit theorem...
- Programming

Tutorial videos

- Probability, Calculus, Functional Analysis, SVD
 https://www.youtube.com/channel/UC7gOYDYEgXG1yIH_rc2LgOw/playlists
- Linear Algebra
 http://www.cs.cmu.edu/~zkolter/course/linalg/index.html

Recitations

- Strongly recommended
 - Brush up pre-requisites
 - Hands-on exercises
 - Review material (difficult topics, clear misunderstandings, extra new topics, HW and exam solutions)
 - Ask questions

- 1st Probability Review FRIDAY
 - by Siddharth Ancha
 - Fri Aug 30 10:30-11:50 am HOA 160

What is Machine Learning?

What is Machine Learning?

Data

Learning algorithm

Knowledge

From Data to Knowledge ... Machine Learning in Action

Spam filtering

Welcome to New Media Installation: Art that Learns

Hi everyone,

Welcome to New Media Installation: Art that Learns

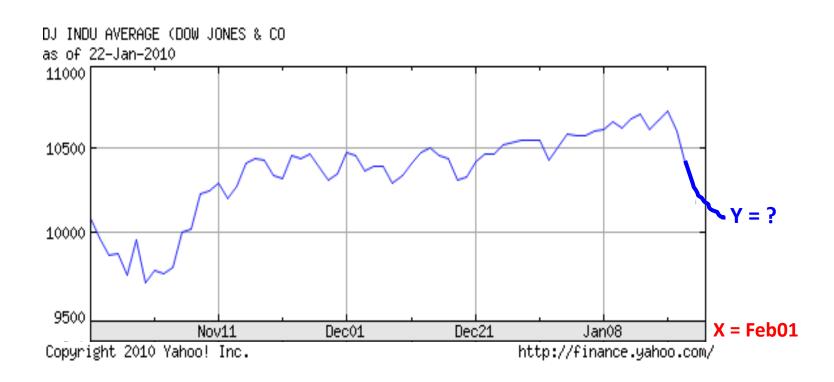
The class will start tomorrow.

Make sure you attend the first class, even if you are on the Wait List.
The classes are held in Doherty Hall C316, and will be Tue, Thu 01:30-4:20 PM.

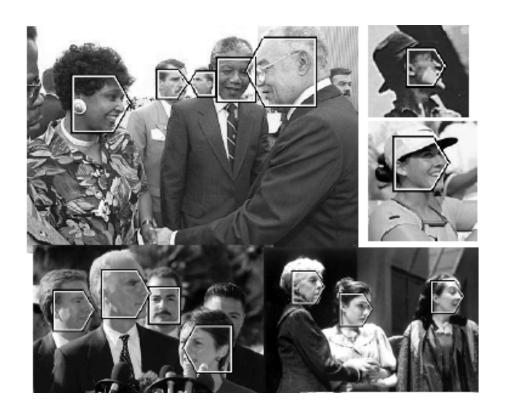
By now, you should be subscribed to our course mailing list: 10615-announce@cs.cmu.edu.

Natural _LoseWeight SuperFood Endorsed by Oprah Winfrey, Free Trial 1 bottle, pay only \$5.95 for shipping mfw rlk | Spam | X

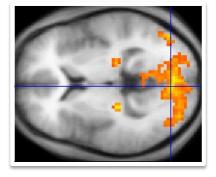
Spam/
Not spam


=== Natural WeightL0SS Solution ===

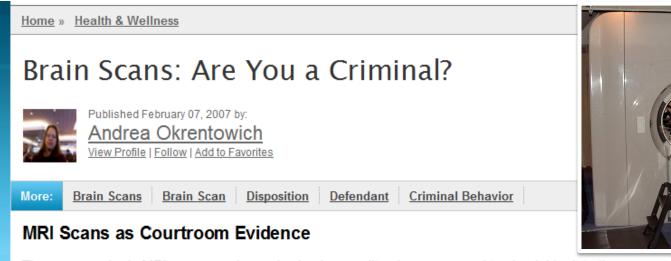
Vital Acai is a natural WeightLOSS product that Enables people to lose wieght and cleansing their bodies faster than most other products on the market.


Here are some of the benefits of Vital Acai that You might not be aware of. These benefits have helped people who have been using Vital Acai daily to Achieve goals and reach new heights in there dieting that they never thought they could.

- * Rapid WeightL0SS
- * Increased metabolism BurnFat & calories easily!
- * Retter Mood and Attitude


Stock Market Prediction

Face detection



Decoding thoughts from brain scans

Rob a bank ...

Cars navigating on their own

Boss, the self-driving SUV
1st place in the DARPA Urban
Challenge.

Photo courtesy of Tartan Racing.

Document classification

Speech recognition, Natural language processing

Computer vision

Robotics

Web forensics

Medical data analysis

Sensor networks

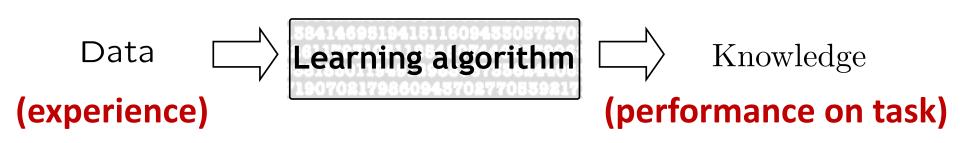
Social networks

Smart buildings

• • •

ML is trending!

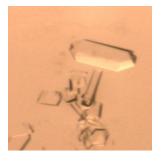
- Wide applicability
- Very large-scale complex systems
 - Internet (billions of nodes), sensor network (new multi-modal sensing devices), genetics (human genome)
- Huge multi-dimensional data sets
 - 1.6 million images, 1000 object categories
 - 30,000 genes x 10,000 drugs x 100 species x ...
- Software too complex to write by hand
- Improved machine learning algorithms
- Improved data capture (Terabytes, Petabytes of data), networking, faster computers
- Demand for self-customization to user, environment "Data scientist: The sexiest job of the 21st century"


Enjoy!

- ML is becoming ubiquitous in science, engineering and beyond
- This class should give you the basic foundation for applying ML and developing new methods
- The fun begins...

What is Machine Learning?


Design and Analysis of algorithms that


- improve their <u>performance</u>
- at some <u>task</u>
- with <u>experience</u>

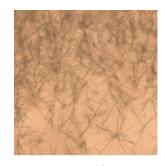
Human learning

Task: Learning stage of protein crystallization

Crystal

Needle

Tree



Tree

Empty

Experience

Needle

,

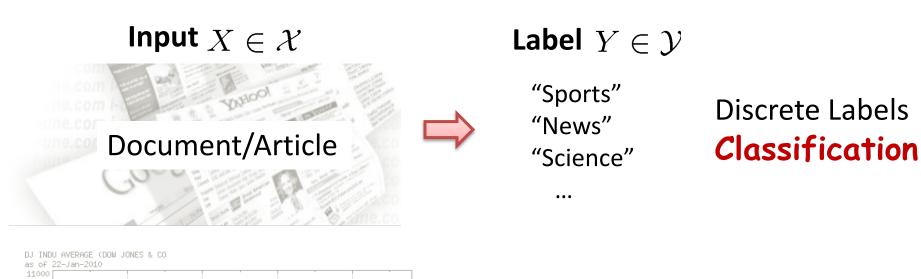
Tasks, Experience, Performance

Tasks, Experience, Performance

Machine Learning Tasks

Broad categories -

Supervised learning

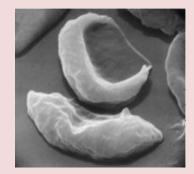

Classification, Regression

Unsupervised learning

Density estimation, Clustering, Dimensionality reduction

- Semi-supervised learning
- Active learning
- Reinforcement learning
- Many more ...

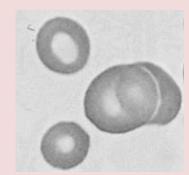
Supervised Learning


Share Price "\$ 24.50"

Continuous Labels
Regression

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

 \equiv Construct **prediction rule** $f: \mathcal{X} \rightarrow \mathcal{Y}$


Classification or Regression?

Medical Diagnosis

"Anemic"
"Healthy"

Aka "learning without a teacher"

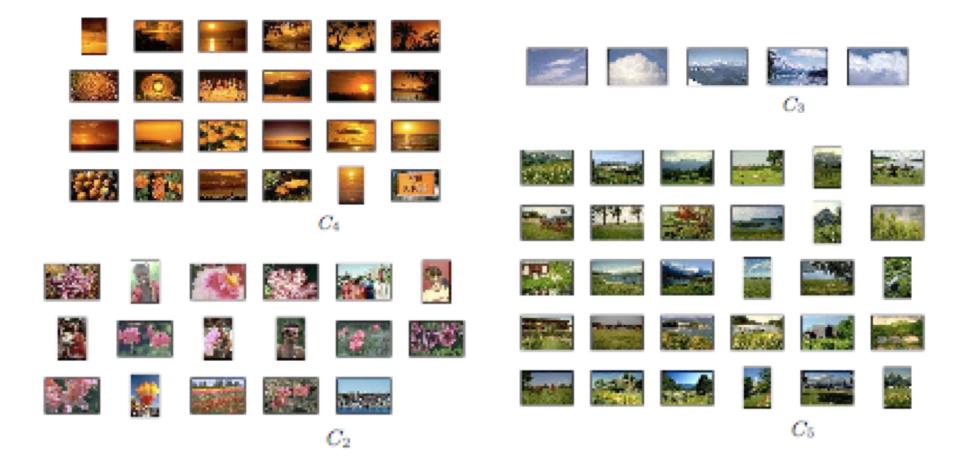
Input
$$X \in \mathcal{X}$$

Document/Article

Word distribution (Probability of a word)

Task: Given $X \in \mathcal{X}$, learn f(X).

Density/Distribution Estimation

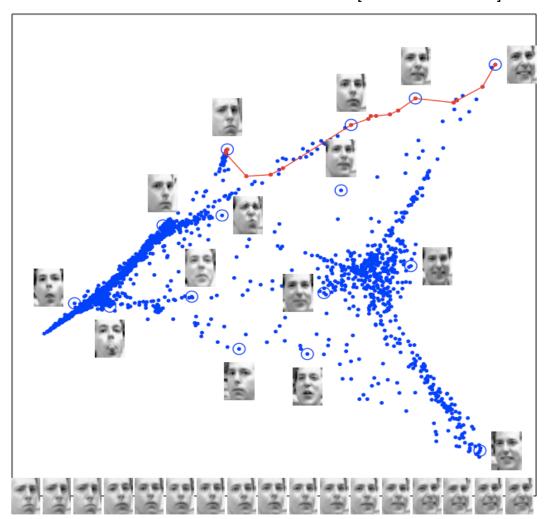


Bias of a coin

Population density

Clustering - Group similar things e.g. images

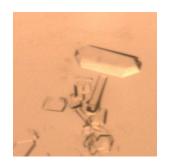
[Goldberger et al.]



Dimensionality Reduction/Embedding

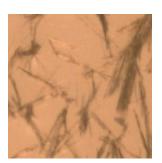
[Saul & Roweis '03]

Images have thousands or millions of pixels.


Can we give each image a small set of coordinates, such that similar images are near each other?

Tasks, Experience, Performance

Training Data vs. Test Data


Task: Learning stage of protein crystallization

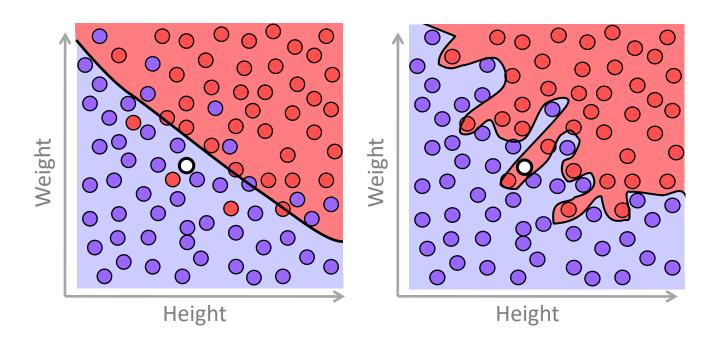
Crystal

Tree

Needle

Empty

Tree



Needle

ŗ

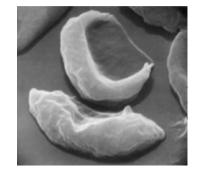
Training Data vs. Test Data

Training data

- FootballPlayer
- No
- Test data

- A good machine learning algorithm
 - Does not overfit training data
 - Generalizes well to test data

Tasks, Experience, Performance


Performance Measure

Performance:

loss(Y, f(X)) - Measure of closeness between true label Y and prediction f(X)

X

"Anemic cell"

"Anemic cell"

0

"Healthy cell"

1

$$loss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$

0/1 loss

Performance Measure

Performance:

loss(Y, f(X)) - Measure of closeness between true label Y and prediction f(X)

X	Share price, Y	f(X)	loss(Y, f(X))
Past performance, trade volume etc. as of Sept 8, 2010	"\$24.50"	"\$24.50"	0
		"\$26.00"	1?
		"\$26.10"	2?

$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

Performance Measure

For a random test data X, measure of closeness between true label Y and prediction f(X)

Binary Classification
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 0/1 loss

Regression
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

Density Estimation
$$loss(f(X)) = -log(\mathbb{P}_f(X))$$
 Negative log likelihood loss