Visions for Euclase: Ideas for Supporting Creativity through

Better Prototyping of Behaviors
Position paper for the ACM CHI 2009 Workshop on Computational Creativity Support

Stephen Oney, Brad Myers, and John Zimmerman
Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213
{soney,bam,johnz}@cs.cmu.edu
http://www.cs.cmu.edu/~NatProg/

ABSTRACT

Our research is investigating how to allow designers and
other creative professionals to easily prototype and create
interactive computer applications and web sites. In this pa-
per, we discuss several studies we have conducted to better
understand the requirements of an environment to support
the authoring of interactive behaviors by creative profes-
sionals. Then we summarize our proposal for a new envi-
ronment that tries to address those requirements. This envi-
ronment would include the ability to explore multiple de-
signs, support for collaboration, and the use of metaphors
that better support the creative process. Finally, this paper
poses questions related to computational support of crea-
tivity.

INTRODUCTION

In this paper, we will focus on the Natural Programming
group’s preliminary work on Euclase, an environment that
enables designers to create interactive behaviors. The term
designer is used with regard to a user’s intention (planning
the look and feel) rather than profession — a designer might
be an interaction designer or a professional programmer.
We define interactive behaviors as ways that applications
respond to users. Interactive behaviors are concerned with
the feel of applications, rather than the look. Euclase stands
for End User Centered Language, APIs, System, and Envi-
ronment.

Unlike the look of an application, which can be modeled in
Photoshop or on paper, the feel of an application usually
must be modeled with complex programming. The few ap-
plications that address the feel at all, such as page transi-
tions in Dreamweaver, are limited to a small fixed set of
behaviors, which in turn limits the designer’s creativity for
what can be expressed.

In initial studies performed by members of our group, we
found that the current tools for designing interactive beha-
viors are inadequate [6]. In addition, we found that design-
ers use a common set of phrases to describe some simple
behaviors, which might help form the foundation of the
syntax for expressing these behaviors [8].

We are approaching the problem of creating a new envi-
ronment by classifying the prototyping of interactive beha-
viors as a form of end-user programming (EUP) [10]. End-
user programming refers to writing programs to support
some other activity, rather than where the program itself is
the user’s job. Because EUP is defined as a goal, someone
could be considered a professional programmer and an end-
user programmer in different situations.

We believe that designers should be considered end-user
programmers because their primary goal is to prototype
designs — not to write the program itself. Their ability to
explore and share possible designs is much more important
than implementation details and minor performance optimi-
zations.

Our main goals for Euclase are to allow for easy explora-
tion and collaboration. We have proposed strategies for
achieving this, and we believe our group’s process will be
beneficial to this endeavor.

ABOUT THE AUTHORS

Stephen Oney is beginning his research in the field of end-
user programming as a first-year PhD student at Carnegie
Mellon University. His previous research was in natural
language processing and machine learning at MIT.

Brad Myers is the head of the Natural Programming group
at Carnegie Mellon. He has led multiple projects pertaining
to end-user programming and programming-by-example. In
addition, he helped organize the NSF workshop on creativi-
ty in 2005.

John Zimmerman is an interaction designer with a joint
appointment in the Human-Computer Interaction Institute
and School of Design at Carnegie Mellon. His main re-
search areas include the role of design in HCI research and
mixed-initiative interfaces that leverage the strengths of
humans and computers.

NATURAL PROGRAMMING

The overall goal of the Natural Programming group is to
apply usability principles to programming environments
and languages, so as to make programming a more natural



and intuitive exercise [5]. One of the most important goals
of the Natural Programming group is to enable EUP, so that
the difficulty of any programming task may be proportional
to the complexity of the task.

HANDS is an example of a tool designed especially for
end-user programmers [7]. Created by John Pane, a former
member of our group, HANDS allows children to express
solutions to problems without advanced programming
knowledge. By using the metaphor of cards as variables,
built-in support for groups of objects, and other features,
HANDS made end-user development more intuitive [7].
Many of the lessons from HANDS are relevant to the de-
sign for our new language and environment.

We plan on leveraging our experience in creating develop-
ment environments for EUP, as well as taking advantage of
interdisciplinary collaborations with psychologists and pro-
fessional designers when creating Euclase.

EUCLASE

Most of today’s tools used by applications designers to pro-
totype are more focused on designing the look of proto-
types, rather than the feel. In programs like Flash and
Dreamweaver, programming custom behaviors still requires
advanced knowledge of languages such as JavaScript and
ActionScript.

The few applications that allow for some prototyping of
behaviors through fagade tools and interface builders do
this by giving the user a library of widgets (as in Microsoft
Visual Basic). However, the creativity of users is limited by
the selection of widgets. In addition, further customization
of these widgets, if even possible, still requires advanced
programming knowledge. A similar approach is taken by
the new Adobe Flash Catalyst, which gives designers a li-
brary of predefined behaviors on which they can overlay
graphics.

Because prototyping of interactive behaviors requires the
use of advanced programming languages, the creation of
these prototypes is limited to people with programming
experience. Usually, the process seems to involve designers
drawing up interface sketches, with rudimentary descrip-
tions of the interactive behaviors, sending these sketches to
a programmer, and having the programmer implement a
computer representation of the design. In fact, the whole
philosophy of the Microsoft Expressions environment
seems to require this style. However, one of our studies
found that most designers have trouble communicating their
desired interactive behaviors to programmers [6].

Thus, the goal of the Euclase project is to enable non-
programmers, especially interaction designers, to create and
prototype interactive applications themselves. Put another
way, we are seeking to eliminate the barriers to implemen-
tation that inhibit designers from actually creating the inter-
faces they are trying to design, and trying to encourage de-
signers to create, prototype, and explore different designs
themselves without the need for a professional programmer.

We believe that this will allow designers to better translate
their ideas into reality, and enhance their creativity.

PRELIMINARY STUDIES

In 2005, we helped organize an NSF workshop on creativity
support tools, to better understand how development and
design tools can foster creativity [11]. One of the results of
this workshop was an enumeration of design principles that
lead to innovation, including support for exploration, colla-
boration, and designing for designers.

This was confirmed by our study of over 200 interaction
designers [6] that formed the start of the Euclase project.
One of the main findings of this study was that designers
overwhelmingly have trouble designing and communicating
the behaviors they want — much more so than the appear-
ance, which they frequently sketch or prototype in envi-
ronments like Photoshop. In addition, many designers said
they wanted to explore many possible designs, but are inhi-
bited by the current tools.

In order to address the difficulties our study found in cur-
rent prototyping environments, and provide the kinds of
tools that the workshop found to foster creativity, we have
developed the following goals for Euclase:

1. Support collaboration and better communication of
interactive behaviors.

2. Allow for and encourage exploration by support-
ing side-by-side comparison, keeping track of arti-
facts from previous designs, and enabling easy use
and integration of examples.

3. Lower the learning curve by using metaphors and
a natural syntax.

4. Integrate debugging as a component of the inter-
face, so that debugging may be part of the design
process.

Some of our ideas on how to achieve these goals are sum-
marized in the following sections.

IMPROVING COLLABORATION AND COMMUNICATION
As mentioned, one of the key conclusions of our study of
the needs of designers is that it is difficult to communicate
the feel of interactive applications. Thus, one of our goals
for Euclase is to incorporate features for collaboration and
communication directly into the interface.

While the tools used by developers and designers to com-
municate, such as versioning systems and e-mail, can be
generalized to multiple languages and disciplines, they lack
features specific to any language that would be beneficial
for collaboration. In Euclase, we want to keep track of arti-
facts made by multiple users during the design process, and
allow users to pick, extract, and incorporate features from
older designs by any of the designers. This feature is further
discussed in the “encouraging exploration” section.



Even when the designers themselves ultimately implement
the behaviors they create, it is still crucial to give them the
ability to annotate their prototype for use as design rationale
for better understanding of the prototype later. Thus, one
idea we have for improving communication of behaviors
and their rationales is to allow for annotation on top of the
user interface, rather than just on the code for implementa-
tion details. These annotations will allow multiple users to
describe why design changes were made.

Incorporating these features directly into the interface of
Euclase will lower the barrier to collaboration and commu-
nication between designers, and will likely increase partici-
pation and the volume of ideas generated during the design
process.

ENCOURAGING EXPLORATION

As concluded by the NSF workshop on creativity, allowing
for exploration of multiple design possibilities is one way to
encourage creativity [11]. There are three main ways we
plan on encouraging this sort of exploration: enabling easy
integration of examples, allowing for side-by-side compari-
sons, and keeping track of multiple versions of designs.

Because there are many common behaviors which design-
ers will likely find useful in prototyping their applications,
we plan on providing examples of interactive behaviors in
Euclase, and making it easy to capture examples found on
the Internet. Examples of interactive behaviors can serve
three roles for designers. First, examples can provide a
wealth of inspiration for new design ideas. Second, using
such example behaviors would provide pre-built compo-
nents from which designers could capture interesting beha-
viors, and third, examples with their corresponding source
code make it easier for designers to learn how to achieve
desired effects.

In the past, most research on allowing for integration of
found examples has been focused on advanced program-
mers, enabling them to look at and learn from code snippets
or example code. One example is our Mica tool, which
helps programmers find example code in Java [12]. Another
such tool is EG, which is also focused on Java code and
allows developers to incorporate, customize, and test exam-
ple code [1]. However, there is no equivalent for prototyp-
ing behaviors, or even other types of EUP.

End users interested in creating an original website are fre-
quently influenced by ideas for interactions and layouts
found at other websites. However, when they see a layout
or a behavior that they like and want to use in their website,
they have no way of extracting it out without extensive
knowledge of multiple web languages - HTML, CSS, and
JavaScript. Thus, we plan on investigating ways to enable
users to extract behaviors from other websites, and custom-
ize them for use in their own creations.

Another crucial aspect in enabling exploration is to allow
the comparison of multiple possible designs, so that the
merits and faults of explored designs may be highlighted.

Because we are focused on interactive behaviors, one pos-
sibility is to allow users to interact with multiple behaviors
by having side-by-side views of how different revisions of
interfaces would handle a particular user input.

Finally, one of the main problems that designers have with
exploration in existing prototyping frameworks is the diffi-
culty in reversing unsuccessful modifications. While most
editors for languages like JavaScript have basic undo/redo
functionality, it is very difficult to keep track of what each
undo action does. In addition, undoing intermediate steps
can result in non-functional code. Thus, exploration is dis-
couraged for fear that a working version of the prototype
might be lost. In Euclase, we want to automatically save
working prototype states, and make representations of dif-
ferent working versions of the prototype plain to see for
easy access, and to let the user know what state each undo
action would return them to. Because each version will be
an incremental change, we could use a pictorial or interac-
tive representation of how behaviors incrementally changed
over time, and create an undo timeline.

SYNTAX AND REPRESENTATION

In looking for possible natural representations of interactive
behaviors, we conducted an additional study which showed
designers some behaviors, and asked them to explain the
behavior in plain English [8]. We learned that there is little
variation in their descriptions for the behaviors that were
shown in the study. We plan on using the results of this
study, and others, to guide the creation of a behavior proto-
typing language for Euclase.

In addition, previous projects like HANDS have looked into
what is the most natural representation for common pro-
gramming tasks, such as performing an operation on a col-
lection of objects. Also, Gamut looked into ways to infer
conditional expressions in a programming-by-demonstra-
tion system [3].

We plan to leverage our studies and past experiences to
create an intuitive and easy to learn syntax for Euclase. In
addition, we plan to use other metaphors to help visualize
program behavior. For example, we found in our survey of
designers that storyboards are a popular way to describe
behaviors. Thus, we will consider metaphors such as show-
ing behaviors on storyboards, with symbols representing
particular kinds of movement.

DEBUGGING

Because exploratory design is largely experimentation, we
believe it will be beneficial to integrate debugging into the
development process. This would support “debugging into
existence” [9] - using debugging information to guide de-
velopment. This is difficult in languages such as JavaScript,
where debugging can only be done while testing the appli-
cation. Instead, we want to incorporate iterative execution,
so that users’ actions take effect immediately. This model
has worked well for languages such as Smalltalk [9].



We also want to address the debugging needs of users who
have undesired behaviors in their prototypes. We plan to
investigate the needs of users while they are debugging, and
center our debugging strategy on the users’ needs. One ap-
proach would use Andrew Ko’s Whyline [2]. This would
allow designers to ask “why” and “why not” questions
about their prototypes; a debugging technique that led to
significant gains in effectiveness of debugging in ALICE
and Java [2].

RESEARCH AND WORKSHOP QUESTIONS

Research into Euclase has generated many interesting ques-
tions, some of which are applicable to the field of computa-
tional support of creativity as a whole. One question deals
with the possibly conflicting values of creativity and consis-
tency. In designing applications, for example, designers and
developers value creativity. From the point of view of a
user, however, using original designs might be difficult to
learn compared to the reuse of older designs. This is still a
problem in disciplines outside of interface design — even in
musical composition, a certain level of consistency seems
to be deemed positive, as evidenced by common use of
techniques like counterpoint. Thus we ask: what techniques
would allow support of creativity while maintaining the
appropriate level of consistency?

Another relevant research question is the role of examples
in creativity. Examples simultaneously serve as a source of
inspiration and a rough how-to guide for creative profes-
sionals. When using an example, the relevant parts of the
example must be isolated. Thus another research question
is: how we can isolate the relevant parts of examples so that
they might be more useful for designers?

CONCLUSION

We have started creating a development environment that
will allow designers prototype interactive behaviors without
professional programming knowledge to. We believe that
by incorporating collaboration, exploration, a natural syn-
tax, and easy debugging into our environment, we can al-
low designers to be more creative in their design than the
current generation of tools.

While we believe our technical background is suited to de-
signing the features of this environment, we recognize that
the challenge of encouraging creativity is a multidiscipli-
nary one. Thus, we are approaching it through a collabora-
tion among computer science, design, and psychology.

ACKNOWLEDGEMENTS

This work would not be possible without the help of Bonnie
John, Andrew Ko, Sun Young Park, Yoko Nakano, and
Greg Mueller. We would also like to thank the ARCS
Foundation. Adobe has provided wonderful financial sup-
port and advice. This research was also supported by the
NSF under Grant No. 11S-0757511. Any opinions, findings
and conclusions or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily re-
flect those of the National Science Foundation.

REFERENCES
1. Edwards, J. “Example Centric Programming.”
OOPSLA 04 Companion Guide, Oct 2004, pp. 124

2. Ko, A. and Myers, B. “Designing the Whyline: A De-
bugging Interface for Asking Questions about Pro-
gram Failures.” CHI 2004, pp. 151-158

3. McDaniel, R. “Building Whole Applications Using
Only Programming-by-Demonstration.” Ph.D. Thesis,
Carnegie Mellon University, Computer Science De-
partment. 1999

4. Myers, B., Ko, A., and Burnett, M. “Invited Research
Overview: End-User Programming” Extended Ab-
stracts, CHI 2006 pp. 75-80

5. Myers, B., Pane, J., and Ko, A. “Natural Programming
Languages and Environments” Communications of the
ACM. Sep. 2004, pp. 47-52

6. Myers, B., Park, S., Nakano, Y., Mueller, G., and Ko,
A. “How Designers Design and Program Interactive
Behaviors,” IEEE Symposium on Visual Languages
and Human-Centric Computing. Sep 2008, pp. 177-
184

7. Pane, J. “A Programming System for Children that is
Designed for Usability.” Ph.D. Thesis, Carnegie Mel-
lon University, Computer Science Department. 2002

8. Park, S., Myers, B., and Ko, A. “Designers’ Natural
Descriptions of Interactive Behaviors” IEEE Sympo-
sium on Visual Languages and Human-Centric Com-
puting. Sep 2008, pp. 185-188

9. Rosson, M. and Carroll, J. “Active Programming
Strategies in Reuse.” EECOOP 1993 - Object
Oriented Programming. pp. 4-20

10. Scaffidi, C., Shaw, M., and Myers, B. “Estimating the
Numbers of End Users and End User Programmers,”
in IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC'05). 20-24 September,
2005. Dallas, Texas: pp. 207-214.

11. Shneiderman, B., Fischer, G., Czerwinski, M., Res-
nick, M., Myers, B., et al. “Creativity Support Tools:
Report from a U.S. National Science Foundation
Sponsored Workshop,” International Journal of Hu-
man-Computer Interaction 2006, pp. 61-77

12. Stylos, J. and Myers, B. “Mica: A Web-Search Tool
for Finding APl Components and Examples.” IEEE
Symposium on Visual Languages and Human-Centric
Computing Sep 2006, pp. 5-7; 195-202



	ABSTRACT
	INTRODUCTION
	ABOUT THE AUTHORS
	NATURAL PROGRAMMING
	EUCLASE
	PRELIMINARY STUDIES
	IMPROVING COLLABORATION AND COMMUNICATION
	ENCOURAGING EXPLORATION
	SYNTAX AND REPRESENTATION
	DEBUGGING
	RESEARCH AND WORKSHOP QUESTIONS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

