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Abstract

A video sequence of an underwater scene taken from

above the water surface suffers from severe distortions due

to water fluctuations. In this paper, we simultaneously esti-

mate the shape of the water surface and recover the pla-

nar underwater scene without using any calibration pat-

terns, image priors, multiple viewpoints or active illumina-

tion. The key idea is to build a compact spatial distortion

model of the water surface using the wave equation. Based

on this model, we present a novel tracking technique that is

designed specifically for water surfaces and addresses two

unique challenges — the absence of an object model or tem-

plate and the presence of complex appearance changes in

the scene due to water fluctuation. We show the effective-

ness of our approach on both simulated and real scenes,

with text and texture.

1. Introduction

In many imaging scenarios, the camera and the scene

of interest are immersed in different media with an inter-

face in-between. Fig. 1 shows a common example where

the camera observes the floor of a pool through the water

surface. The task is to recover the image of the floor that

is severely distorted by water fluctuation. Similar scenar-

ios occur in turbulence imaging[16], astronomy and satellite

imaging[15], underwater imaging[10], measuring objects in

liquid[23] and tunable liquid lensing[11].

As illustrated in Fig. 1, light transport across the in-

terface is caused by reflection and refraction1. This

leads to a variety of effects such as non-single viewpoint

distortion[21], double images[4], scene distortion[7, 5, 6,

22] and illumination caustics[17] in a single acquired im-

age. Such effects impair the common goal of imaging

systems: to record a faithful image of the scene. When

the interface is flat and fixed over time, a static light

transport model can be developed to eliminate some ef-

fects. For example, reducing light reflections by polariza-

tion filtering[14] and removing image distortions by using a

1Diffusion into scattering medium like marble/milk is not considered.
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Figure 1. An image captured through a wavy water surface. The

camera and the scene of interest are immersed in different me-

dia with an interface in between. Complex reflection, refraction

effects and caustics can make image interpretation hard. Our tech-

nique exploits a physically based model for water surface fluctu-

ation to undistort scenes from a video sequence without requiring

calibration objects or active illumination.

multi-viewpoint model of the camera[21].

On the other hand, when the water surface fluctuates over

time, the dependency of light transport on the interface ren-

ders any static model inapplicable. In this case, undistortion

is possible if the exact shape of the interface can be mea-

sured. In [9], the interface and the scene are illuminated by

spectrally isolated red and green channels, and captured by

a color camera. The surface shape is thus measured by one

channel and used to undistort the other. In [12], a known

scene (calibration pattern) is tracked to estimate the surface.

When the interface is unknown, a single image is insuf-

ficient to recover the scene, and hence a video sequence is

necessary. Here, a statistical model is often used to undis-

tort a stationary scene without recovering the water sur-

face. Simple pixel-wise mean/median works well for re-

ducing small fluctuations[18]. A better approach is to se-

lect only “good” image patches from the video frames and

stitch them together (also known as the “lucky image”[8]).

Several works [7, 5, 6] find the center of the distribution

of patches from the video as the undistorted patch, ei-

ther by embedding them on a manifold[7] or by clustering

them[5, 6]. Recently, Wen et al. [22] model the frames as

random phase perturbations in the Fourier domain, and av-

erage them using the bispectrum to undistort the image.

In this paper, we address the problem of simultaneously

recovering both the water surface and the underlying planar

static scene given only a video sequence with severe dis-

tortions. The key idea is to build a spatial distortion model
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of the water surface using the wave equation. In particular,

we build a simulator for image distortion due to fluctua-

tions of the water surface (Fig. 2). Since the fluctuations

are mostly smooth, we derive a reduced space model of the

image distortions using PCA, yielding fewer number of pa-

rameters. This enables our model-based tracking algorithm

to estimate the water surface at every time instant, by fitting

the model to each video frame. Finally, the estimated water

surface is used to recover the original scene with reduced

distortions. We validate our approach using both simulated

scenes and real scenes with text and textures.

Compared to previous approaches, our method has sev-

eral advantages. We do not require calibration patterns[12],

special illumination[9], multiple view points[13], or impose

any prior on the scene. We use a short sequence (61 instead

of 800 in [7] or 120 in [22]). The water surface estima-

tion enables better stitching of patches than [7] and better

stabilization (restoration) of each video frame. In contrast

to most tracking methods[3, 24, 2, 1], our approach does

not require object models (or templates) and works even

with topological changes in the scene. As a trade-off, the

model-based tracking requires the acquisition of videos at

a higher-than-usual frame rate (125 fps). In the future, we

will extend our approach to handle reflections, caustics and

higher-order optical effects (double images, total internal

reflection, etc).

2. Physical model for water fluctuation

2.1. Image formation

Consider a stationary and planar scene Ig(x) settled at

the bottom of the water pool, and an orthographic camera

above the water surface, taking images downward. Due to

the fluctuating water surface, each video frame I(x, t) is a
distorted version of Ig(x) with the following relationship:

I(x, t) = Ig(x + w(x, t)) (1)

where w(x, t) is the unknown distortion that varies over

time. This model is illustrated in Fig. 2. The goal is to re-

cover both the stationary image Ig(x) and the water surface
distortion w(x, t) using only the captured video I(x, t).

2.2. Wave equation

According to Snell’s law, under first-order

approximation[19], we can relate the distortion func-

tion (warping) w(x, t) to the height h(x, t) of water surface
at time t:

w(x, t) = α∇h(x, t) (2)

where α is a constant related to water height h0 when the

water surface is still and relative refraction index between

air and water.

I(x,t)

gI (x+w(x,t))

n

h(x,t)

orthographic 
cameraAir

Water
underwater scene

Figure 2. Scene radiance Ig from stationary scene immersed in

water is warped due to light refraction at the fluctuating water sur-

face before imaged by a sensor. This relates the distortion function

w(x, t) to the height h(x, t) of the water surface at time t.

Figure 3. Two samples of 2-D Gaussian processes used as the ini-

tial conditions of the wave simulator.

When the maximum surface fluctuation

maxx,t |h(x, t) − h0| is small compared to h0, the

water surface is governed by the wave equation:

∂2h(x, t)

∂t2
= c2∇2h(x, t) (3)

where c =
√

gh0 is the speed of wave (g is the gravity).

Using water equation, we implicitly incorporate all the

specific appearance changes induced by water fluctuation

into one framework, which eliminates modeling individual

water-induced distortions.

2.3. Synthesis of water surface using the wave equa­
tion

Given the image formation model, we build a water sim-

ulator based on Eqn. 3. Our simulator is more general than

that of [22] as we directly simulate the wave equation rather

than only use particular solutions of that equation.

To simulate the wave equation, we use forward Euler

method which is easy to implement and stable for small

time step ∆t: h(x, t + ∆t) = 2h(x, t) − h(x, t − ∆t) +
c2∇2h(x, t)(∆t)2, where ∇2h(x, t) is the Laplacian oper-

ator. The initial conditions h(x, 0) and h(x, 1) are chosen

to be a spatially correlated Gaussian random processes in a

2-D grid, as illustrated in Fig. 3. More specifically, h(x, 0)
and h(x, 1) are sampled from a multivariate Gaussian dis-

tribution N(h0,Σ) with each entry of the covariance Σx,x′

inversely proportional to the spatial distance between x and

x
′:

Σx,x′ = exp

(

− ||x − x
′||2

2σ2
synthesis

)

(4)

σsynthesis is set by visually comparing the appearance of a

known scene in the water tank with that from simulations.

Importantly, σsynthesis is independent of the scene.



Figure 4. Image synthesis using image formation model (Eqn. 1)

and wave equation (Eqn. 2 and Eqn. 3). In each row, the first patch

is undistorted; while the rest are distorted.

The motivation for this spatial correlation is that the wa-

ter surface fluctuates smoothly. Then given the water state

h(x, t), we warp the original image using Eqn. 1 by linear

interpolation. Fig. 4 shows the typical distortions observed

in synthesized images. Note the topological changes in the

letters (splitting or merging parts) and the smooth curvy dis-

tortions. All of these appearance changes make it difficult

for traditional template/feature tracking methods to work.

3. A reduced model for water distortion

For each video frame of size m1 by m2, the water height

function h(x, t) has spatial dimension m1m2, which is typ-

ically on the order of thousands. Due to the issues of local

maxima, time complexity and stability, most parameter es-

timation methods fail on such a high dimensional space.

Fortunately, since the water surface is smooth, the struc-

ture of the height field h(x, t) can be captured using a small

number of dimensions, using model reduction techniques.

This step benefits the water shape estimation (Section 4) in

two ways. First it reduces the number of parameters so that

the estimation process is both computationally feasible and

stable. Second, it encodes the smoothness and wave-like

characteristics of h(x, t) into the lower dimensional bases

and it is not necessary to explicitly enforce these charac-

teristics (e.g., using smoothness constraints in the objective

function) during parameter estimation.

Since it is nontrivial to know the water shape in real data,

we use the simulator built in Section 2 to get the train-

ing samples, where c = 0.8pixel/frame and σsynthesis =
10pixel. We partition the warping w(x, t) from simula-

tion into small patches of the same size (57 × 40), stack
them together as training samples, regardless of their ex-

act spatial locations, and compute the PCA bases for these

patches. Note w is a two-dimensional vector field, so the

dimension of warping samples is 57 × 40 × 2. In all

our experiments, we have used the bases corresponding

to the first 10 eigenvalues. The resulting bases B(x) =
[b1(x), b2(x), . . . , b10(x)], called water bases, are shown in
Fig. 5. By construction, the bases are translation invariant.

Once we obtain the bases, we can represent any warping

w of this particular size (57× 40) by coefficients p defined

on these bases, i.e., w(x, t) ≈ B(x)pt.

Wx
1

Wy
1

Wx
2

Wy
2

Wx
3

Wy
3

Wx
4

Wy
4

Wx
5

Wy
5

Wx
6

Wy
6

Wx
7

Wy
7

Wx
8

Wy
8

Wx
9

Wy
9

Wx
10

Wy
10

Figure 5. Water bases B.
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Figure 6. Some samples generated by water bases. Perceptually,

these samples look like real images taken under water fluctuation.

One may also use other parametric models, such as

splines and polynomials, to obtain the same compact set

of bases with similar wave-like behavior. However, many

non-intuitive parameters such as coefficients, orders, con-

trol points need to be fine-tuned. In contrast, using wave

equation achieves the goal intuitively with only 2 parame-

ters (the wave speed c and smoothness σsynthesis). More-

over, it is not necessary to precisely determine the value of

σsynthesis since the water bases in Fig. 5 offers an additional

range of variation in smoothness.

Using patches offers the best trade-off between model

flexibility and computational efficiency. Pixel-wise defor-

mation field offers higher degree of freedom, yet it leads to

intensive computations and issue of local maxima. On the

other hand, model the distortion globally is inflexible and

hence fails to capture fine structures.

3.1. Validation

The reduction of the dimensions from 57×40×2 = 4560
to 10 may seem drastic. There are two reasons for this re-

duction. First, the exact mean-square errors in reconstruct-

ing the simulated data is of less importance to us. What

is more important is that the bases capture water wave-like

behavior. Second, as we shall discuss in Section 4, more

parameters may introduce instabilities in estimation. In the

following, we validate our choice of these 10 bases, show-

ing they indeed offer a faithful representation of water dis-

tortion.

3.1.1 Samples generated by water bases

We first validate water basesB by generating distorted sam-

ples. Fig. 6 illustrates some generated samples. They are

perceptually similar to real water-distorted image, despite

the low dimensionality of water bases B. The main char-

acteristics of water distortion, such as line distortion and

topological changes, are exhibited.



Figure 7. Warp reconstruction using water bases. The first row

shows the original image patch, the second row shows the distorted

version under water warping simulated using Eqn. 2 and Eqn. 3.

The last row shows the distortion obtained by projecting onto the

water bases. The similarity between the second and third rows

shows the effectiveness of the learned bases.

3.1.2 Warping reconstruction using bases

In addition to generating perceptually plausible samples, the

model also has to provide a faithful representation of water

distortion. We verify this by comparing original distortions

w and projected distortions wproj = BBT
w on several

image patches. The original distortions are sampled from

the simulator described in Section 2.

As illustrated in Fig. 7, there is little qualitative differ-

ence between a image patch which is distorted by w, and

that distorted by projected distortion wproj on B.

4. Model-based tracking without template

For each frame of the input video sequence, we must

estimate the coefficients {pt} corresponding to the water

bases B. But how do we do this without knowing the un-

derlying undistorted image?

One approach is to exploit temporal continuity of video

and develop a tracking algorithm. However, this application

presents several challenges for classical techniques that rely

on object templates or image features. We develop a new al-

gorithm for tracking water distortions and demonstrate how

the coefficients {pt} can be estimated reliably.

4.1. Challenges for tracking water surfaces

While there has been a lot of progress on tracking a va-

riety of objects[3, 24, 2, 1, 20], a fluctuating water surface

poses unique and significant challenges. For the methods

where only metric and affine transforms are considered, cer-

tain geometric invariants[20] can be used to locate land-

marks to help in tracking. However, the distortions due to a

wavy water surface are highly non-linear and it is unlikely

that simple geometric invariants can be derived.

Several tracking methods also require an object model

or a template that can be used in a training stage[3, 24, 2].

However, in our case, no single frame is distortion-free to be

used as a template. One option is to use the pixel-wise mean

(median) frame as the template. But the mean image is often

highly blurred when compared to the original frames.

Alternatively, one may think of using one frame of the in-

put video as the object template and track the rest using the

underwater scene

frame s

underwater scene

frame s frame t

traditional tracking water tracking

frame t

underwater scene

x
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Figure 8. The left image shows water warping maps two distinct

positions x and x
′ onto an identical position y of underwater

scene. Water warping is hence not one-to-one and not invertible.

Therefore, a tracking paradigm that models the mapping from one

frame to the other (shown in the middle) are ill-suited to water

warping. Instead, our water tracking technique uses the paradigm

on the right, in which no inversion is needed.

warps defined on bases B, as in template tracking[1]. How-

ever, the distortion function of a water surface is not one-to-

one, hence not invertible (Fig. 8). This means a warping be-

tween two images distorted from an undistorted one using

B cannot be represented within this subspace. Therefore,

traditional tracking techniques are ill-suited.

4.2. Our method

Our goal is to find a consistent underwater image Îg such

that every frame in the video can be warped to this image us-

ing its warping coefficients. Consider two frames I(xs, s)
and I(xt, t) at time s and t as shown in Fig. 8. Using the

warping coefficients ps and pt, we can obtain the undis-

torted image estimates Îg(y
s, s) and Îg(y

t, t) by the fol-

lowing transformation:

y
s(ps) = x

s + w(xs, s) ≈ x
s + B(xs)ps (5)

y
t(pt) = x

t + w(xt, t) ≈ x
t + B(xt)pt (6)

where, ys and y
t are the locations on the two undistorted

images respectively. From the image formation model,

Îg(y
s, s) = I(xs, s), Îg(y

t, t) = I(xt, t) (7)

Then, our objective is to minimize the difference between

the two undistorted images:

J(ps,pt) =

∫

(

Îg(y, s) − Îg(y, t)
)2

dy (8)

In practice, we optimize the above objective function in

the discrete domain by minimizing the following summa-

tion over sample points {ys
i } and {yt

i}:

J̃(ps,pt) =
n
∑

i=1

(

Îg(y
s
i , s) − Îg(y

s
i , t)

)2

+ symm. (9)

Here, “symm” is the other term with superscript t instead
of s, xs

i and x
t
i are sampled from regular image (pixel) grid



locations and the coordinates y
s
i and y

t
i are obtained using

Eqn. 5 and Eqn. 6. From Eqn. 7, we rewrite Eqn. 9 as:

J̃(ps,pt) =

n
∑

i=1

(

I(xs
i , s) − Îg(y

s
i , t)

)2

+ symm. (10)

We estimate Îg(y
s
i , t) and Îg(y

t
i , s) by interpolation. For

Îg(y
s
i , t), we find nearby sample points {yt

j} from frame

t and use corresponding intensity values {Îg(y
t
j , t)} =

{I(xt
j , t)} to interpolate at position y

s
i and obtain Îg(y

s
i , t).

Similarly we obtain Îg(y
t
i , s). To make J̃ smooth, the

interpolation is done using kernel regression. In particu-

lar, higher weights are given on close neighbors and lower

weights on faraway ones. We also interpolate Îg(y
t
i , s).

Eqn. 10 is thus minimized using gradient descent with

proper initial conditions to be discussed in Section 4.2.2.

4.2.1 Two heuristics to handle local minima

Minimizing the objective function in Eqn. 10 is a non-

convex optimization problem and may result in local min-

ima. We handle this problem using two heuristics. First,

we start with optimizing Eqn. 10 over neighboring pairs of

frames, as in traditional tracking. Optimizing over frames

separated by a large time interval may encounter more lo-

cal minima, and is only practical when reasonable initial

conditions are available. Second, instead of directly work-

ing with the solution (ps,pt) that minimizes Eqn. 10, we

regard their difference ∆pts = pt − ps as the reliable esti-

mation. This is used to avoid any translational ambiguity.

It is tempting to directly use the wave equation to model

the continuity between frames. However, three factors make

it hard: first, the wave equation cannot be solved without

knowing possibly arbitrary external excitation and/or damp-

ing forces; second, using wave equation again involves tem-

poral coupling of distortion parameters; finally, since we

adopt a patch-based method, modeling the interactions be-

tween patches remains nontrivial. In practice, the heuristics

presented above work well as shown by our results.

4.2.2 Warping estimation for multiple frames

Eqn. 10 is defined for two frames, while typically a video

has many frames. One approach is to extend the idea of esti-

mating a consistent undistorted image over multiple frames

by defining a similar function J̃(p1,p2, . . . ,pT ). However,
this function involves joint optimization of all {pt}, which
is computationally difficult due to issues of local minima,

stability and computational complexity.

Here we adopt two incremental approaches: one for long

sequences (61 frames in our experiment) used in image

restoration; the other for short sequences (15 frames in our

experiment) used in video stabilization.

Long video sequences: To estimate {pt}, we optimize

Eqn. 10 over the frame pairs in a particular order. Specif-

ically, given a sequence of frames, we first find the center

frame I(x, c), and estimate the warping difference between

I(x, c) and its neighboring frames I(x, c± 1) using the ini-
tial condition pc = pc±1 = 0. Then we optimize Eqn. 10

between the center frame I(x, c) and I(x, c ± 2) using the

solution (pc,pc±1) of previous optimization as the initial

condition, and so on.

The reason for this strategy is that neighboring frames

are often similar. However, just using neighboring frames

independently to obtain ∆ptc may lead to accumulated er-

rors or drift. To maintain stable estimation, it is also impor-

tant to have long-range connections (e.g. between I(x, c)
and I(x, 1)), which is possible with our strategy.

After all the warping differences ∆ptc between frame

t and center frame c are obtained, we exploit the periodic

nature of water fluctuation and estimate pt by enforcing the

constraint
∑

t pt = 0 over all the frames.

Short video sequences: In this situation, we just com-

pute the neighboring warping difference ∆pt+1,t using

Eqn. 10 under initial condition pt = pt+1 = 0. Then we

minimize the following function to obtain coefficients {pt}:

R(p1, . . . ,pT ) =

T−1
∑

t=1

||pt+1−pt−∆pt+1,t||2+λ

T
∑

t=1

||pt||2

(11)

where T is the number of frames. The second term is yet

another way to express the periodic nature of water fluctu-

ation because in such a short video,
∑

t pt = 0 may not

necessarily hold. We choose λ = 0.1 in our experiments.

As a convex optimization problem, Eqn. 11 can be

solved efficiently, resulting in a faster way to do video sta-

bilization than the previous strategy. In fact, one can first

compute the neighboring warping differences over the en-

tire video sequence, and then optimize Eqn. 11 on each slid-

ing window to obtain a stabilized frame.

4.3. Validation

We verify the tracking procedure on simulated scenes,

in which we know the state of water surface and undistorted

scene. Samples of the 61 consecutive patches of size 57×40
are shown in Fig. 9. We estimate the coefficients p on water

bases B using the above procedure. Then the undistorted

patch is estimated by first undistorting each frame using the

estimated warping and computing the mean patch over all

61 frames. Our method results in better image restoration

for severe distortions as shown in Fig. 9. The blurring is

due to the averaging of individual undistorted frames. We

believe this is a really challenging data set and our method

produces an image with similar topology while pixel-based

methods do not. Also, notice that the estimation of p are

reasonable compared to ground truth.
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Figure 9. Water tracking validation using simulated data. The two rows on the top-left show sample patch inputs. High distortions including

translation, curving and topological changes (merging and splitting) are depicted compared to the original image (shown in bottom-right).

Handling these distortions is out of the scope of traditional tracking methods, while the proposed water tracking techniques can. To verify

the accuracy of our estimation, the bottom-left part shows estimated coefficients (red dashed line) versus true coefficients (blue solid line)

on the water bases B, while the top-right part shows the reconstructed warping in X and Y direction versus the true warping at frame 31
(the middle frame). The estimations, although not perfect, are reasonable given the complex appearance changes.

5. Image restoration and video stabilization

5.1. Experiment setup

The experiment consists of a 125 Hz video camera ob-

serving vertically downward a 0.5m deep semi-transparent

water tank with a planar scene at the bottom. The tank is

illuminated from the side to avoid surface reflections. The

water surface is manually disturbed.

5.2. Image restoration

For a patch sequence of the same size as water bases

B, we can estimate warping coefficients using the tracking

method, and restore the underwater patch. For a video se-

quence with larger spatial dimension, we first partition the

video into disjoint patches of size 57 × 40, for each patch

perform the restoration and stitch the results together. How-

ever, it creates artifacts on the patch boundaries, as in [7].

Given that we know the image distortion of each frame

tiled by patch distortions w ≈ Bpt, a simple Gaussian

blurring on warping boundaries and restoration using these

blurred deformation fields alleviates the problem. In con-

trast, it would be hard if only the restored patches are

known.

Fig. 10 shows image restoration results on several scenes

with different sizes of text and texture. The first column

shows one sample of the 61 input frames, severely distorted

by water fluctuation. The second and third columns show

the results from pixel-wise approaches. The last two list

our results with two different partitions, showing significant

improvements especially in the case of text.

We verify the accuracy of the estimated warps as follows.

Ground truth scene    Synthesized image     Input video frame

Figure 11. Image synthesis using estimated warping. Given the

ground truth scene with still water surface (the first column), a dis-

torted image (the second column) can be synthesized that is similar

to corresponding input video frame (the third column). Note the

distortion and topological changes are correctly synthesized.

Using the ground truth undistorted scene, we synthesize the

distortions using the estimated warps, as shown in Fig. 11.

The visual similarity between the synthesized and the ac-

quired frames validates our warp estimation approach.

5.3. Video stabilization

Similarly, we can stabilize a long video2 by applying

our method on continuous temporal windows, as described

in Section 4.2.2. We use a sliding window of size 15
(corresponding to 0.12 second at 125 fps). Pixel-wise

2Videos can be downloaded at http://www.cs.cmu.edu/∼yuandong
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Our method     Our method
 Partition 1       Partition 2
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input frame Median image

Figure 10. Image restoration results. We test our method on four different sizes of text fonts, as well as check board and brick textures. The

first column shows a sample frame from the input video, which is severely distorted. Then the second and third column shows the result

by pixel-wise mean/median, which is less distorted but severely blurred. Finally our results are shown on the last two columns using two

patch partitions (partition A starts at image coordinate (1, 1), while partition B starts at image coordinate (28, 20), the center of the left-top
rectangle in partition A). Notice our method alleviates the distortion but still retains image details (Please zoom in to see the details).



mean/median on the sliding window of the same size are

also shown. Compared to the input video and results from

mean/median, it is clear that our method reduces water fluc-

tuation with minimal loss of image quality.

6. Discussion

There are many further directions beyond this work. The

requirement of a camera with a higher-than-usual frame rate

(125 fps) is closely related to the issue of stability and local

minima in tracking. It is possible to employ a hierarchi-

cal structure on tracking to avoid local minima and hence

extend our work to video frames with lower sample rate.

Another avenue is to explore the optimal number and

size of water bases. With too few bases, the major char-

acteristics of water warping cannot be described accurately;

with too many bases, the tracking procedure becomes slow

and unstable, and may encounter more local minima. Sim-

ilarly there exists a trade-off for the size of bases. On one

hand, larger bases cover more image area and thus help sta-

bilize the tracking procedure; on the other hand, more bases

have to be involved to compensate for larger size.

In Section 4.3, we compute the pixel-wise mean val-

ues of undistorted images to recover the underwater scene,

which results in blurring. In the future, we will explore

more sophisticated statistical approaches[7, 22].

Undistorting scenes that have undergone significant re-

fraction is a hard problem. Our work provides an initial

step in a new direction with potential implications in other

domains such as turbulence imaging and liquid lensing.
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