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Abstract Global illumination effects such as interreflec-
tions, diffusion and subsurface scattering severely de-

grade the performance of structured light-based 3D scan-

ning. In this paper, we analyze the errors caused by

global illumination in structured light-based shape re-
covery. Based on this analysis, we present a practical 3D

scanning system which works in the presence of a broad

range of global illumination effects. First, we design bi-

nary structured light patterns that are resilient to in-

dividual global illumination effects using simple logical
operations and tools from combinatorial mathematics.

Scenes exhibiting multiple phenomena are handled by

combining results from a small ensemble of such pat-

terns. This combination also allows us to detect any
residual errors that are corrected by acquiring a few

additional images.

The techniques presented in this paper do not re-

quire a priori knowledge of the light transport in the
scene. They do not require explicit separation of the

direct and global components of scene radiance, which

reduces the number of required input images while also

improving the reconstruction quality. Our techniques
outperform many existing schemes while using signifi-

cantly fewer images (12-42 versus 200-700) as compared
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to previous work dealing with global illumination. Our
methods can be readily incorporated into existing scan-

ning systems without significant overhead in terms of

capture time or hardware. We show results on a variety

of scenes with complex shape and material properties
and challenging global illumination effects.

Keywords Structured light 3D scanning, interreflec-
tions, subsurface scattering, defocus, global illumina-

tion, projectors.

1 Introduction

Structured light triangulation has become the method

of choice for shape measurement in several applica-

tions including industrial automation, graphics, human-

computer interaction and surgery. Since the early work
in the field about 40 years ago [36,24,32], research has

been driven by two factors: reducing the acquisition

time and increasing the depth resolution. Significant

progress has been made on both fronts (see the survey
by Salvi et al. [33]) as demonstrated by systems which

can recover shapes at close to 1000 Hz. [40] and at a

depth resolution better than 30 microns [10].

Despite these advances, the applicability of most

structured light techniques remains limited to well be-

haved scenes. It is assumed that scene points receive

illumination only directly from the light source. For
many real world scenarios, this is not true. Imagine a

robot trying to navigate an underground cave or an

indoor scenario, a surgical instrument inside human

body, a robotic arm sorting a heap of metallic machine
parts, or a movie director wanting to image the face

of an actor. In all these settings, scene points receive

illumination indirectly in the form of interreflections,
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Translucent Marble Slab 

Concave Bowl 

Strong Interreflections Blurring due to sub-surface scattering 

(a) Concave bowl on a (b) Input image under (c) Input image under
translucent marble slab low frequency illumination high frequency illumination

Errors due to 

interreflections 

Errors due to 

subsurface scattering 

(d) Shape recovered using (e) Shape recovered using (f) Shape recovered using
Conventional Gray codes (11 images) Modulated phase shifting [7] (162 images) our ensemble codes (42 images)

Fig. 1 Measuring shape for the ‘bowl on marble-slab’ scene. This scene is challenging because of strong interreflections inside
the concave bowl and subsurface scattering on the translucent marble slab. (b) Scene points inside the bowl which are not directly
illuminated receive substantial irradiance due to interreflections. (d) This results in systematic errors in the recovered depth. (c) Due
to subsurface scattering on the translucent marble slab, high-frequency illumination patterns are severely blurred. (e) This results in
large depth errors on the marble-slab. (f) Our technique uses an ensemble of codes optimized for individual light transport effects,
and results in an accurate shape reconstruction. Parentheses contain the number of input images. For more results and detailed
comparisons to existing techniques, please see the project web-page [1].

subsurface or volumetric scattering. Such effects, col-
lectively termed global or indirect illumination1, often

dominate the direct illumination and strongly depend

on the shape and material properties of the scene. Not

accounting for these effects results in large errors in the
recovered shape (see Figure 1b). Because of the system-

atic nature of these errors 2, it is hard to correct them

in post-processing.

1 Global illumination should not be confused with the oft-used
“ambient illumination” that is subtracted by capturing image
with the structured light source turned off.

2 In photometric stereo, interreflections result in a shallow but
smooth reconstruction [28,27]. In structured light 3D scanning,
interreflections result in local errors.

The goal of this paper is to build an end-to-end
system for structured light 3D scanning under a broad

range of global illumination effects. The focus is on de-

signing the projected patterns (coding) and decoding

schemes. In particular, we consider binary structured
light patterns, which are perhaps the simplest to im-

plement and widely used in several research and com-

mercial systems. The key observation is that different

global illumination effects place contrasting constraints

on the spatial frequencies of projected structured light
patterns. In particular, interreflections result in errors

for low frequency structured light patterns 3. On the

3 Strictly speaking, since all binary patterns have step edges,
all of them have high spatial frequencies. For the analysis and
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other hand, local effects such as subsurface scattering

and defocus blur the high frequency patterns, making

it hard to decode them reliably.

We design patterns that modulate global illumina-
tion and prevent the errors at capture time itself. We

show that it is possible to construct codes with only

high frequency binary patterns by introducing the con-

cept of logical coding and decoding. The key idea is

to express low frequency patterns as pixel-wise logical
combinations of two high-frequency patterns. Because

of high frequencies, these patterns are resilient to long

range effects. In order to deal with short range effects,

we use tools from combinatorial mathematics to design
patterns consisting solely of low frequencies. In compar-

ison, most currently used patterns (e.g., Gray codes)

contain a combination of both low and high spatial fre-

quencies, and thus are ill-equipped to deal with global

illumination.

Global illumination in most real world scenes is not

limited to either short or long range effects. Codes op-

timized for long-range effects would make errors in the

presence of short-range effects and vice versa. How do
we handle scenes that exhibit more than one type of

global illumination effect (such as the one in Figure 1(a)?

To answer this, we observe that the probability of two

different codes producing the same erroneous decod-
ing is very low. This observation allows us to project a

small ensemble of codes and use a simple voting scheme

to compute the correct decoding at every pixel, without

any prior knowledge about the scene (Figure 1(d)).

Finally, for highly challenging scenes, we present

an error detection scheme based on a simple consis-

tency check over the results of the individual codes in

the ensemble. We then use an error correction scheme

which further reduces the errors due to global illumina-
tion by selectively re-illuminating only the incorrectly

reconstructed scene points [37]. We demonstrate ac-

curate reconstructions on scenes with complex geom-

etry and material properties, such as shiny brushed
metal, translucent wax and marble and thick plastic

diffusers (like shower curtains). Our methods can be

readily incorporated into existing systems without sig-

nificant overhead in terms of acquisition time or hard-

ware. We believe that these techniques are important
steps towards making 3D scanning techniques applica-

ble to a large class of complex, real world scenarios.

discussion in this paper, low frequency patterns implies patterns
with thick stripes. Similarly, high frequency patterns mean pat-
terns with only thin stripes.

2 Related Work

Structured light 3D Scanning: 3D scanning using

structured light is one of the oldest computer vision

techniques. Since the first papers [36,24,32], a lot of

progress has been made in terms of reconstruction speed,
accuracy and resolution. Broadly, these techniques are

divided into discrete [20] and continuous [39] coding

schemes. For an exhaustive survey on structured light

techniques, reader is referred to the survey by Salvi et
al [33]. In addition, hybrid techniques that combine

structured light with photometric stereo based tech-

niques have been proposed as well [29,2].

Shape recovery in the presence of global illumi-

nation:The seminal work of Nayar et al. [27] presented

an iterative approach for reconstructing shape of Lam-
bertian objects in the presence of interreflections. Liu

et al. [23] proposed a method to estimate the geometry

of a Lambertian scene by using the second bounce light

transport matrix. Gupta et al. [17] presented methods

for recovering depths using projector defocus [38] un-
der global illumination effects. Chandraker et al. [5]

use interreflections to resolve the bas-relief ambiguity

inherent in shape-from-shading techniques. Holroyd et

al. [19] proposed an active multi-view stereo technique
where high-frequency illumination is used as scene tex-

ture that is invariant to global illumination. Park et al.

[31,30] move the camera or the scene to mitigate the

errors due to global illumination in a structured light
setup. Hermans et al. [18] use a moving projector in

a variant of structured light triangulation. The depth

measure used in this technique (frequency of the in-

tensity profile at each pixel) is invariant to global light

transport effects. In this paper, our focus is on design-
ing structured light systems that are applicable for a

wide range of scenes, and which require a single camera

and a projector, without any moving parts.

Nayar et al. showed that the direct and global com-

ponents of scene radiance could be efficiently separated [28]

using high-frequency illumination patterns. This has led
to several attempts to perform structured light scan-

ning under global illumination [6,7,13]. All these tech-

niques rely on subtracting or reducing the global compo-

nent and apply conventional approaches on the residual

direct component. While these approaches have shown
promise, there are three issues that prevent them from

being applicable broadly: (a) the direct component esti-

mation may fail due to strong interreflections (as with

shiny metallic parts), (b) the residual direct compo-
nent may be too low and noisy (as with translucent

surfaces, milk and murky water), and (c) they require

significantly higher number of images than traditional
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approaches, or rely on weak cues like polarization. Re-

cently, Couture et al. [8] proposed using band-pass

unstructured patterns to handle interreflections. Their

approach involves capturing a large number (200) of

images with random high-frequency patterns projected
on the scene. In contrast, we explicitly design ensembles

of illumination patterns that are resilient to a broader

range of global illumination effects (interreflections, sub-

surface scattering, defocus, diffusion, and combinations
of multiple effects), while using significantly fewer im-

ages.

Shape recovery in other optically challenging

scenarios: Active illumination has also been used to

measure density distribution of volumetric media [3,
14] and reconstruct transparent objects [34,25]. For a

detailed survey on techniques for reconstructing trans-

parent and specular surfaces, please refer to the state

of the art report by Ihrke et al [21]. There have also
been techniques for performing 3D scanning in the pres-

ence of volumetric media using light striping [26,16].

Our techniques can not handle volumetric scattering.

The focus of this work is on reconstructing opaque and

translucent surfaces with complex shapes.

3 Errors due to Global Illumination

In this section, we analyze errors in structured light
based depth recovery caused due to different global

illumination effects. The basic principle behind shape

from structured light techniques is triangulation. Each

projector row/column is encoded with a unique spa-

tial or temporal code. Projector illuminates the scene
with the assigned code and camera takes a sequence of

images, one for each projected pattern. For each cam-

era pixel, the corresponding projector row/column is

found by decoding the measured intensity values. The
depths are then computed by intersecting the camera

ray with the plane containing the corresponding pro-

jector row/column and projector center.

The resulting depth estimate is incorrect is there is

an error in estimating the correspondence. The form

and magnitude of errors depend on the region of in-

fluence of global illumination at any scene point. For

instance, some scene points may receive global illumi-
nation only from a local neighborhood (subsurface scat-

tering). We call these short-range effects. Some points

may receive global illumination from a larger region (in-

terreflections or diffusion). We call these long range ef-
fects. As shown in Figures 2 and 3, long range effects

and short range effects result in incorrect decoding of

low and high spatial frequency patterns, respectively.

We analyze these errors for the case of binary struc-

tured light patterns.

Binary patterns are decoded by binarizing the cap-

tured images into projector-illuminated vs. non-illuminated

pixels. A robust way to do this is to capture two images
L and L, under the pattern P and the inverse pattern

P , respectively 4. For a scene point Si, its irradiances

Li and Li are compared. If, Li > Li, then the point is

classified as directly lit. A fundamental assumption for
correct binarization is that each scene point receives ir-

radiance from only a single illumination element (light

stripe or a projector pixel). However, due to global il-

lumination effects and projector defocus, a scene point

can receive irradiance from multiple projector pixels,
resulting in incorrect binarization.

In the following, we derive the condition for correct

binarization in the presence of global illumination and

defocus. Suppose Si is directly lit under a pattern P .
The irradiances Li and Li are given as:

Li = Li
d + β Li

g , (1)

Li = (1− β)Li
g , (2)

where Li
d and Li

g are the direct and global components

of the irradiance at Si when the scene is fully lit. β is

the fraction of the global component under the pattern

P .

In the presence of defocus (projector or camera), the

projected patterns and the captured image is blurred.

Similarly, aberrations due to imperfect projector optics

also result in blurring of the projected patterns. The

blur influences the highest frequency patterns, often
completely blurring them out 5. Defocus, unlike global

illumination effects, modulates the direct component as

well, as shown in [17]:

Li = αLi
d + β Li

g , (3)

Li = (1− α)Li
d + (1 − β)Li

g . (4)

The fractions (α and 1−α) depend on the projected

pattern and the amount of defocus. In the absence of
defocus, α = 1. For correct binarization, it is re-

quired that Li > Li, i.e.

αLi
d + β Li

g > (1− α)Li
d + (1− β)Li

g (5)

4 The inverse pattern can be generated by subtracting the im-
age from image of the fully lit scene.

5 For example, pico-projectors are increasingly getting popu-
lar for structured light applications in industrial assembly lines.
However, due to imperfect optics, they can not resolve patterns
with thin stripes, for example, a striped pattern of 2-pixel width.
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Scene with interreflections: Concave V-groove

Illustration of errors due to interreflections: The scene point marked with red is directly illuminated when the low frequency
pattern is projected on the scene. It is not directly lit when the inverse pattern is projected. However, due to interreflections, its intensity
is higher when it is not directly lit (0.25) as compared to when it is directly lit (0.16). This results in a decoding (binarization) error, as
shown on the right. Scene points decoded as one (directly illuminated) are marked in yellow and points decoded as zero (not illuminated)
are marked in blue. In the correct decoding, only the points to the left of the concave edge should be zero.

Decoding for high-frequency patterns: High frequency patterns are decoded correctly even in the presence of interreflections. See
Section 3.1 for a detailed explanation.

Fig. 2 Structured light decoding in the presence of interreflections. Top: A concave v-groove. Middle: Illustration of
structured light decoding errors due to interreflections. Interreflections result in low-frequency patterns being decoded incorrectly.
Bottom High-frequency patterns are decoded correctly.
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(a) (b) (c) (d) (e)

Fig. 3 Structured light decoding in the presence of subsurface scattering: (a) This scene consists of a translucent slab of
marble on the left and an opaque plane on the right. (b) A high frequency pattern is severely blurred on the marble. Consequently,
binarization information can not be extracted reliably on the marble slab (c). In contrast, the image captured (d) under a low-frequency
pattern is binarized (e) more accurately.

This condition is satisfied in the absence of global
illumination (Li

g = 0) and defocus (α = 1). In the fol-

lowing, we analyze the errors in the binarization process

due to various global illumination effects and defocus,

leading to systematic errors6.

3.1 Long range effects (diffuse and specular

interreflections)

Consider the scenario when a scene point Si receives

a major fraction of the global component when it is

not directly lit (β ≈ 0), and the global component is

larger than the direct component (Li
d < Li

g) as well.
Substituting in the binarization condition (Eqn. 5), we

get Li < Li, which results in a binarization error. Such

a situation can arise due to long-range interreflections,

when scenes are illuminated with low-frequency pat-
terns. This is because low frequency patterns illuminate

the scene asymmetrically. For example, consider the v-

groove concavity as shown in Figure 2. Under a low

frequency pattern, several scene points in the concavity

are brighter when they are not directly lit, resulting in
a binarization error. Since the low frequency patterns

correspond to the higher-order bits, this results in a

large error in the recovered shape.

In contrast, if the scene is illuminated with a high-

frequency pattern, the corresponding captured image is

binarized correctly even in the presence of interreflec-
tions. This is explained as follows. If a high-frequency

pattern (with equal off and on pixels) is projected on

the scene, scene points receive approximately half the

global component, i.e., β ≈ 0.5 [28]. Thus, for a scene

6 Errors for the particular case of laser range scanning of
translucent materials are analyzed in [12]. Errors due to sensor
noise and spatial mis-alignment of projector-camera pixels were
analyzed in [35].

point Si, Li ≈ Li
d + 0.5Li

g and Li ≈ 0.5Li
g. Conse-

quently, Si, L
i ≥ Li, and the condition for correct bi-

narization is satisfied. An example is shown in Figure 2.

3.2 Short-range effects (subsurface scattering and

defocus)

Short range effects result in low-pass filtering of the in-

cident illumination. In the context of structured light,

these effects can severely blur the high-frequency pat-

terns, making it hard to correctly binarize them. This
can be explained in terms of the binarization condition

in Eqn 5. For high frequency patterns, β ≈ 0.5 [28]. If

the difference in the direct terms |αLi
d − (1− α)Li

d| is

small, either because the direct component is low due

to subsurface scattering (Li
d ≈ 0) or because of severe

defocus (α ≈ 0.5), the pattern can not be binarized

robustly. An example is shown in Figure 3.

In the presence of short range effects, most of the

global illumination at a scene point comes from a local
neighborhood. Thus, for low frequency patterns, when

a scene point is directly illuminated, most of its lo-

cal neighborhood is directly illuminated as well. Hence,

α ≥ 0.5 and β ≥ 0.5. Thus, if we use low frequency

patterns for short-range effects, the global component
actually helps in correct decoding even when the direct

component is low. As a result, an image captured under

low-frequency pattern is binarized more reliably.

For conventional Gray codes, the high-frequency pat-
terns correspond to the lower significance bits. Loss

of information in the high-frequency patterns results

in a loss of depth resolution. For example, if patterns

of width less than 5 pixels can not be resolved, last 2

bits of information will be lost if using the conventional
Gray codes. An example is shown in Figure 6.

In summary, long and short range effects respond

differently to the spatial frequencies of the incident il-
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lumination. In the presence of long-range effects, low-

frequency patterns are susceptible to incorrect bina-

rization, whereas high-frequency patterns are decoded

correctly. On the other hand, for short-range effects,

high-frequency patterns are susceptible to coding er-
rors while the low-frequency patterns are decoded ac-

curately.

4 Patterns for Error Prevention

Errors due to global illumination are systematic, scene-
dependent errors that are hard to eliminate in post-

processing. In this section, we design patterns that mod-

ulate global illumination and prevent errors from hap-

pening at capture time itself. As discussed in the pre-

vious section, in the presence of only long range effects
and no short-range effects, high-frequency binary pat-

terns (with equal off and on pixels) are decoded cor-

rectly. On the other hand, in the presence of short-range

effects, low-frequency patterns are decoded more reli-
ably.

Because of the contrasting requirements on spatial

frequencies, it is clear that we need different codes for

different effects. For long range effects, we want pat-

terns with only high frequencies (low maximum stripe-
widths). For short-range effects, we want patterns with

only low frequencies (high minimum stripe-widths). How-

ever, most currently used patterns contain a combi-

nation of both low and high spatial frequencies. How
do we design patterns with only low or only high fre-

quencies? In this section, we show that by performing

simple logical operations, it is possible to design codes

with only high frequency patterns. For short range ef-

fects, we draw on tools from the combinatorial maths
literature to design binary codes with large minimum

stripe-widths, resulting in patterns with low spatial fre-

quencies.

4.1 Logical coding-decoding for long range effects

We introduce the concept of logical coding and decod-

ing to design patterns with only high frequencies. An

example of logical coding-decoding is given in Figure 4.

The important observation is that for structured light

decoding, the direct component is just an intermediate

representation, with the eventual goal being the cor-

rect binarization of the captured image. Thus, we can

bypass explicitly computing the direct component. In-

stead, we can model the binarization process as a scene-
dependent function from the set of binary projected

patterns (P) to the set of binary classifications of the

captured image (B):

f : P ⇒ B . (6)

For a given pattern P ∈ P, this function returns
a binarization of the captured image if the scene is il-

luminated by P . As we saw earlier, under interreflec-

tions, this function can be computed robustly for high-

frequency patterns but not for low-frequency patterns.
For a low frequency pattern Plf , we would like to de-

compose it into two high-frequency patterns P 1
hf and

P 2
hf using a pixel-wise binary operator ⊙ such that:

f(Plf ) = f
(

P 1
hf ⊙ P 2

hf

)

= f
(

P 1
hf

)

⊙ f
(

P 2
hf

)

(7)

If we find such a decomposition, we can robustly

compute the binarizations f
(

P 1
hf

)

and f
(

P 2
hf

)

under

the two high frequency patterns, and compose these to

achieve the correct binarization f (Plf ) under the low
frequency pattern. Two questions remain: (a) What bi-

nary operator can be used? (b) How can we decompose

a low frequency pattern into two high frequency pat-

terns? For the binary operator, we choose the logical
XOR (⊗) because it has the following property:

P 2
hf ⊗ P 1

hf = Plf ⇒ P 2
hf = Plf ⊗ P 1

hf (8)

This choice of operator provides a simple means to

decompose Plf . We first choose a high-frequency pat-

tern P 1
hf . The second pattern P 2

hf is then computed by

simply taking the pixel-wise logical XOR of Plf and
P 1
hf . We call the first high frequency pattern the base

pattern. Instead of the original low frequency pattern,

the two high-frequency patterns P 1
hf and P 2

hf are pro-

jected on the scene. The corresponding captured images

are binarized. The two binarizations are then combined
by performing another pixel-wise logical XOR opera-

tion. This produces the correct binarization as if the

scene was illuminated by the original low frequency pat-

tern. An example is shown in Figure 4.

The logical patterns are constructed by taking the
pixel-wise logical XOR of a high-frequency pattern (base

plane or base pattern) in the conventional Gray codes

with all other patterns. This is illustrated in Figure 4.

The resulting patterns have only high spatial frequen-

cies. Note that there is no overhead introduced; the
number of projected patterns remains the same as the

conventional codes. If the last Gray code pattern is cho-

sen as the base plane, the resulting codes are called log-

ical XOR-02 codes. All the projected patterns have a
maximum stripe width of 2 pixels. In contrast, the orig-

inal Gray codes have a maximum stripe-width of 512

pixels.
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(a) Conventional Decoding vs. Logical Coding and Decoding (b) Generation of Logical XOR Patterns
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Our XOR−04 Codes

Conventional Gray Codes

Ground Truth

(c) Depth (conventional Gray codes) (d) Depth (our Logical XOR04 codes) (e) Comparison with the ground truth
Mean absolute error = 28.8mm Mean absolute error = 1.4mm

Fig. 4 Logical coding and decoding for long range global light transport: (a) In logical coding and decoding, a low frequency
pattern is expressed as a pixel-wise logical combination (e.g., XOR) of two high frequency patterns. The high-frequency patterns are
projected on the scene and the captured images are binarized. The two binarizations are then combined by performing another pixel-
wise logical operation (XOR). This produces the correct binarization as if the scene was illuminated by the original low frequency
pattern. (b) The logical patterns can be constructed by taking the pixel-wise logical XOR of a high-frequency pattern (base plane) in
the conventional Gray codes with all other patterns. The resulting patterns have only high spatial frequencies. The number of projected
images remains the same. If the last pattern is chosen as the base plane, the resulting codes are called logical XOR-02 codes. If the
second-to-last pattern is used as the base plane, the resulting codes are called logical XOR-04 codes. (c) Depth map computed with
the conventional codes. Because of incorrect binarization of the low frequency patterns (higher-order bits), depth map has large and
systematic errors. Because of their systematic nature, these cannot be removed by simple smoothing in post-processing. (d) Depth
map computed using our logical XOR-04 codes. The errors due to interreflections have been significantly reduced. (e) Comparison
with the ground-truth. Ground truth was computed by manually binarizing the captured images.

If the second-to-last pattern is used as the base

plane, the resulting codes are called logical XOR-04

codes. The last pattern is projected unmodified. In these
codes, all the projected patterns have a maximum stripe-

width of 4 pixels. In general, if the (n− k)th pattern is

used as the base plane, the resulting codes would be log-

ical XOR-2k+1 codes. The maximum stripe width would
be 2k+1 pixels and the last k − 1 planes would be pro-

jected unmodified. The patterns for logical XOR-02 and

XOR-04 codes are shown in Figure 7. The pattern im-

ages can be downloaded from the project web-page [1].

Color Logical XOR Codes: Next, we discuss the

use of color to design patterns. Color patterns reduce

the number of required input images 7 as compared to
binary patterns. We show that it is possible to construct

7 The color of the incident illumination can be decoded from
the image of the illuminated scenes on a per-pixel basis, even for
non-white scenes [4]. It is not required to assume spatial smooth-
ness or color neutrality of the scene.
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(a-c) Color Gray codes

(d-f) Input images for concave bowl using color Gray codes (g) Depth map

(h-j) Color Logical XOR codes

(k-m) Input images for concave bowl using color Logical XOR codes (n) Depth map

Fig. 5 Color Gray codes vs. color Logical XOR codes. (a-c) Color Gray codes for a projector with 512 columns. Since the
number of possible distinct color values at each projector pixel is 8, only 3 patterns are required to encode 512 distinct columns. In
contrast, binary coding requires 9 patterns. (d-f) Input images of a concave bowl for projected patterns (a-c). (g) Computed depth
map. Due to low frequencies in the projected patterns, interreflections result in erroneous reconstruction near the periphery of the
bowl. Please zoom in for details. (h-j) Color Logical XOR codes, constructed by performing logical XOR operations on the color
Gray codes. All the patterns have high spatial frequencies. (k-m) Input images of a concave bowl for projected patterns (h-j). (n)
Computed depth map. Errors due to interreflections have been significantly mitigated. Most of the residual errors result from pixel
saturation due to specularities.
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color logical XOR codes as well by performing logical

operations, similar to the binary case.

Given 3 color channels, we consider the case where

each color channel at a projector pixel has a binary

value. Thus, each projector pixel can take 8 possible
color values - {RGB} = {000, 001, 010, 011, 100, 101,

110, 111}. For example, if a projector pixel is encoded

as {100}, its red channel will be 1, and the green and

blue channels will be 0. In case of color codes, Ncolor =
⌈log8(M)⌉ patterns are required to uniquely encode M

projector columns. In contrast, under binary coding

schemes, Nbin = ⌈log2(M)⌉ patterns are required to

encode M different projector columns. For example, if

M = 512, Ncolor = 3. In contrast, Nbin = 9.

Figure 5 (a-c) shows color Gray codes for a projec-

tor with 512 columns. These codes were generated using

the K-ary (K = 8) reflected Gray code construction [9].

Figures 5 (d-f) show input images of a concave bowl un-

der the color Gray codes. Due to low frequencies in the
projected patterns, interreflections result in erroneous

reconstruction near the periphery of the bowl.

In order to construct color logical XOR codes, we

start with color Gray codes. It has been shown that by
performing a color calibration between projector and

camera [4], the color transfer matrix between the pro-

jector and the camera can be made a diagonal matrix,

and each color channel can be treated independently.

With this observation, the color logical XOR codes can
be constructed in a similar way as binary codes. First,

we choose a base plane. In our experiments, we chose

the highest frequency pattern from color Gray codes

as the base plane. The remaining color XOR codes are
made by taking the pixel-wise logical XOR of the base

plane with other color Gray code patterns, for each

color channel independently:

X i
c = Gi

c ⊗G1
c , (9)

for c = {R,G,B} , i = {2 : Ncolor}. X i
c is the

cth color channel of the ith pattern of the color Logical

XOR codes. Gi
c is the cth color channel of the ith pat-

tern of the color Gray codes. G1
c is the cth color channel

of the base plane. The captured images are first bina-

rized in each color channel independently 8 and then

combined by performing a pixel-wise logical XOR op-
eration in each color channel. This produces theK−ary

(in this case,K = 8) decoding as if the scene was illumi-

nated by the original low-frequency patterns. Figure 5

(h-j) show the color Logical XOR codes constructed

8 Two additional images of the scene, one under all white illu-
mination, and one under all black illumination were acquired to
establish the per-pixel intensity thresholds for binarization.

using the algorithm described above. All the patterns

have high spatial frequencies. Figures 5 (k-n) show the

corresponding input images of the concave bowl and

the computed depth map. Errors due to interreflections

have been significantly mitigated. The MATLAB code
for generating the patterns and decoding the input im-

ages is provided on the project web-site [1].

4.2 Maximizing the minimum stripe-widths for

short-range effects

Short-range effects can severely blur the high-frequency

base plane of the logical XOR codes. The resulting bina-
rization error will propagate to all the decoded patterns.

In order to be resistant to local blurring due to short-

range effects, patterns with low spatial frequencies must

be designed. For binary patterns, this corresponds to
designing patterns with large minimum stripe-width.

In general, it is not feasible to find such codes with a

brute-force search as these codes are extremely rare9.

Fortunately, this problem has been well studied in

combinatorial mathematics. There are constructions avail-

able to generate codes with large minimum stripe-widths

(min-SW). Kim et al [22] used a variant of Gray codes
with large min-SW called the antipodal Gray codes to

mitigate errors due to defocus. The 10-bit binary Gray

code with the maximum known min-SW (8) is given by

Goddyn et al. [11]. We call these codes the maximum
min-SW Gray codes. These codes are shown in Figure 6

and 7. The algorithm to construct these codes is given

in [11]. A limitation is that these algorithms do not gen-

eralize well for general K-ary codes. For the remaining

paper, we will consider only binary codes. The MAT-
LAB code to generate these codes can be downloaded

from the project web-site [1].

In comparison, conventional Gray codes have a min-

SW of 2. For Gray codes, increasing the minimum stripe-

width also serves the dual purpose of reducing the maxi-

mum stripe-width. Thus, maximummin-SWGray codes
have a maximum stripe width of 32 pixels. Consequently,

these codes, while being resistant to short-range effects,

are also more resistant to long range effects as compared

to the conventional Gray codes. Figure 6 shows a scene

consisting of industrial parts. A pico-projector was used
to illuminate the scene. Due to defocus, the high fre-

quency patterns in the conventional Gray codes can not

be decoded reliably, resulting in a loss of depth resolu-

tion. In contrast, depth map computed using maximum

9 It is relatively easy to generate codes with small maximum
stripe-width (9), as compared to 512 for the conventional Gray
codes, by performing a brute-force search.
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(a) Maximum min-SW Gray codes (b) Conventional Gray codes

(c) Histogram of stripe-widths (d) Histogram of stripe-widths (e) Histogram of stripe-widths (f) Histogram of stripe-widths
Maximum min-SW Gray codes Conventional Gray codes Logical XOR-04 codes Logical XOR-02 codes
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Conventional Gray Codes

Our Gray Codes

(g) Scene consisting of (h) Depth map using (i) Depth map using (j) Depth map comparison
industrial parts conventional Gray codes maximum min-SW Gray codes

Fig. 6 Designing patterns for local effects: (a) Local effects such as subsurface scattering and defocus result in blurring of
incident illumination. For such effects, patterns with low spatial frequencies must be designed. We used tools from combinatorial
mathematics literature to design binary patterns which maximize the minimum stripe width. These patterns are called maximum
min-SW Gray codes. (b) Conventional Gray codes. (c-d) Histograms of stripe-widths for different patterns. For the maximum min-SW
Gray codes, all the stripes have widths in the range [8, 32] pixels. In contrast, the range of stripe-widths for conventional Gray codes,
[2, 512] pixels, is significantly larger. For XOR-04 and XOR-02 codes, the ranges are [2, 4] and [1, 2] pixels respectively. (g) A scene
consisting of industrial parts. (h) Due to defocus, the high frequency patterns in the conventional Gray codes can not be decoded
reliably, resulting in a loss of depth resolution. Notice the quantization artifacts. (i) Depth map computed using Gray codes with large
minimum stripe-width (min-SW) does not suffer from loss of depth resolution.

min-SW Gray codes does not suffer from loss of depth

resolution.

5 Ensemble of codes for general scenes

So far, we have designed codes optimized for long or

short range effects. In general though, it is not straight-
forward to identify which code to use without knowing

the dominant error-inducing mode of light transport.

This, in turn, requires a priori knowledge about scene.

Moreover, global illumination in most real world scenes
is not limited to either short or long range effects. Codes

optimized for long-range effects would make errors in

the presence of short-range effects and vice versa. In

this section, we address the question: how can we handle

general real world scenes which can have both short and
long range global illumination effects?

5.1 Depth recovery algorithm using ensemble of codes

We show that by projecting a small ensemble of codes
optimized for different effects, it is possible to handle

a large class of optically challenging scenes, without a

priori knowledge about scene properties. The key idea is

that errors made by different codes are nearly random.
Thus, if the depth values computed using two differ-

ent codes is the same, with a very high probability, it

must be the correct value. Using this observation, we
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Conventional Gray Codes

Maximum Min-SW Gray Codes

Logical XOR-04 Codes

Logical XOR-02 Codes

Fig. 7 Visualization of different binary coding schemes: The patterns are for a projector with resolution 768 × 1024; thus,
each scheme has 10 patterns. For each scheme, each row in the figure represents one pattern. Conventional Gray codes have a wide
range of stripe-widths- [2, 512] pixels. The range for maximum min-SW Gray codes is [8, 32] pixels. For logical XOR-04 and XOR-02
codes (optimized for long range effects), the ranges are [2, 4] and [1, 2] pixels respectively. Pattern images are available for download
from the project web-site [1].

propose a simple depth recovery algorithm which uses

an ensemble of codes.

In particular, we project four different codes: two

optimized for long-range effects (the XOR-04 and the
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XOR-02 codes), and two codes for short-range effects

(the Gray codes with maximum min-SW and the con-

ventional Gray codes). Each code returns a depth map

of the scene, as shown in Figure 8 (a-d). The final depth

value is computed by performing a simple consistency
check across the depth values computed using the indi-

vidual codes. If any two depth values are within a small

threshold, that value is returned 10.

Intuitively, the two long-range codes produce the

correct depth value in the presence of long-range effects,

and the short-range codes produce the correct value in

the presence of short-range effects. Since there are two
codes each for long and short-range effects, the consis-

tency check will pick the correct depth value. Note that

conventional Gray codes might lose depth resolution in

the presence of defocus of subsurface scattering. There-

fore, if only the two Gray codes agree, we return the
value computed by the maximum min-SW Gray codes,

because it has a higher depth resolution.

Figure 8 (e) shows the depth map computed using
the above algorithm. While the individual codes have

significant errors due to either interreflections or sub-

surface scattering, the final depth map is nearly error-

free. The 3D reconstruction of the scene is shown in Fig-

ure 1. The pseudo-code for the method is given in
Algorithm 1. MATLAB code can be downloaded from

the project web-page [1].

In the following, we show that the probability of two
different codes making the same error, i.e., two differ-

ent codes producing the same incorrect depth value, is

very low. Readers not interested in the detailed error

analysis can skip Section 5.2 and go directly to results
in Section 6.

5.2 Error analysis of the code ensemble algorithm

Assume, without loss of generality, that the intensity
coding is along the x-dimension of the projector im-

age plane, i.e., vertical stripes are projected. Therefore,

each projector column has a unique code. For binary

patterns, the code is binary. In this case, if the total

number of projector columns is M , the code needs to
have N bits, where N = ⌈log2(M)⌉. N binary patterns

are projected on the scene and the camera captures N

images, one for each projected pattern.

10 Due to imperfect projector optics, insufficient cam-
era/projector resolution or misalignment between projector and
camera pixels, the depth results from individual codes might suf-
fer from spatial aliasing. This problem is more pronounced for the
high-frequency XOR codes. To prevent aliasing from affecting the
final depth estimate, we apply a median filter (typically 3× 3 or
5 × 5) to the individual correspondence maps before performing
the consistency check.

(a) Conventional Gray codes (b) Maximum min-SW Gray codes

(c) XOR-04 codes (d) XOR-02 codes

(e) Code ensemble algorithm (f) Qualitative light transport

Fig. 8 Code ensemble algorithm to reconstruct scenes
with multiple global illumination effects: The scene is the
same as shown in Figure 1. We project four different codes -
two logical XOR codes and the two Gray codes. Depth esti-
mates using individual codes (a-d) have errors due to global
illumination effects. (e) The code ensemble algorithm performs
a simple consistency check to compute a depth map with sig-
nificantly fewer errors. (f) By analyzing the errors made by the
individual codes, we can infer qualitative information about light-
transport. Points marked in green correspond to translucent ma-
terials. Points marked in light-blue receive strong interreflections.

Let the projector column number a has an N bit
binary code CS

a . S denotes the coding scheme. In this

paper, S ∈ {CG,MM − SW,XOR02, XOR04}, cor-

responding to conventional Gray, maximum min-SW

Gray, logical XOR02 and logical XOR04 codes, respec-
tively. Suppose a pixel in the column a directly illumi-

nates the camera pixel x. Let the vector of intensity val-

ues at x be ISx . In order for the correct correspondence
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to be established, the code CS
a should be recovered from

ISx . However, various factors such as sensor noise, or il-

lumination fluctuations or defocus and global illumina-

tion effects can result in some of the bits flipping from

0 to 1 or vice versa. This results in a decoding error.
Let the recovered code be CS

b . We assume that the ob-

servation noise in different observations is independent.

Thus, flipping of each bit in the code is independent

of other bits. Then, the probability of code CS
a getting

decoded incorrectly as CS
b is

Pr[CS
a → CS

b ] = pd , (10)

where p is the probability of one bit flipping and d is

the hamming distance between CS
a and CS

b , 0 ≤ d ≤ N .
p is a function of sensor noise characteristics, illumi-

nation levels, scene albedos and light transport in the

scene. A small value of p implies that the decoding is

reliable. On the other hand, a large value of p indi-
cates unreliable decoding. If we pose the problem of

structured light as a communication problem, p would

denote the reliability of the communication channel be-

tween the projector and the camera.

We have assumed p to be constant for all bit po-

sitions. In general, since the errors due to global illu-
mination are structured, p is different for different bit

positions. For example, for conventional Gray codes in

the presence of interreflections, since low frequency pat-

terns (higher significance bits) are more likely to be de-

coded incorrectly, p is more for higher significance bit
positions as compared to lower significance bits. Com-

puting the p values for different codes would require

knowing the scene structure a priori. One possibility

is to simulate the structured light decoding process by
rendering several scenes with light transport effects and

sensor noise models. While such an approach can pro-

vide estimates of the value of p, it is beyond the scope

of this paper. The goal of our analysis is to show that

the probability of two different coding schemes making
the same error is very low, for a wide range of values

of p. If different p values are estimated for different bit

positions, the analysis presented here can be done in a

similar way.

We now define the confusion matrixMS for a coding

scheme S as MS(a, b) = Pr[CS
a → CS

b ], where a and b

are two projector columns. MS(a, b) is the probability

of CS
a being decoded incorrectly as CS

b . This matrix is

a measure of error resilience of a given coding scheme.

In order to be the most error resistant, the confusion
matrix should be a diagonal matrix. Note that the con-

fusion matrix is a function of p, the probability of a

single bit-flip.

Figure 9 shows the confusion matrices for the four

coding schemes that we consider, for two different val-

ues of p. As expected, for a low value of p, the matrix is

nearly diagonal for all the schemes. However, for a large

value of p, the off-diagonal terms are comparable to the
near-diagonal terms. This can result in large decoding

errors. Note that the structure of the confusion matrices

for the logical XOR codes is similar to the conventional

Gray codes as the former are derived from the latter.

The code ensemble algorithm (Section 5.1) results

in an error if the same decoding error happens for two

different schemes. For the camera pixel x, suppose the

correct corresponding projector column is a. The joint
probability of the column a being incorrectly decoded

as the column b, for two different coding schemes S1

and S2 is

Pr[(CS1a → CS1b) & (CS1a → CS1b)] =

Pr[CS1a → CS1b] . P r[CS1a → CS1b] . (11)

This follows from the independence of the image ac-

quisition and the decoding process for the two schemes.
These probabilities form the joint error probability ma-

trix P (S1,S2), where P (S1,S2)(a, b) = MS1(a, b)×MS2(a, b).

Figure 10 shows the matrices for 6 pairs of schemes. The

off-diagonal values are small; most of them being of the
order of 10−6. Finally, we note that a column a can

be incorrectly decoded as any other column b. So, the

probability that the code ensemble algorithm will result

in a decoding error for the column a is the sum of the

ath row of the matrix P (S1,S2)

P (S1,S2)(a) =
∑

b

P (S1,S2)(a, b) . (12)

Figure 10 shows the plots for P (S1,S2)(a) with re-

spect to a for different pairs of schemes. Note that most

of the probability values are less than 1%. Figure 11
shows the mean probability of error for different pairs

of schemes, where the mean is taken over all the projec-

tor columns. Most of the values are less than 1%, with

the maximum being 1.4%.

Mean depth error: A decoding error results in an
incorrect depth estimate. The magnitude of the depth

error is directly proportional to the column error |a−b|,

where a is the correct column number and b is the de-

coded (incorrect) column number. The expected col-

umn error E(S1,S2) for a pair of schemes S1 and S2
is

E(S1,S2) =
1

M

∑

a,b

|a− b|P (S1,S2)(a, b) , (13)
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Fig. 9 Confusion matrices for different coding schemes. Confusion matrix gives the probabilities of a projector column being
decoded incorrectly as another projector column, under a given coding scheme. In order for the scheme to be the most error resistant,
the confusion matrix should be a diagonal matrix. We use the confusion matrices of individual coding schemes to perform error analysis
of our code ensemble algorithm (Section 5). Top row: Confusion matrices for p = 0.05, where p is the probability of a single binary
bit (of the N bit code) flipping. p is a function of the noise of the imaging and illumination system, scene albedos and light transport
in the scene. For a low value of p, the confusion matrices for all the schemes are nearly diagonal. Bottom row: Confusion matrices
for p = 0.3. Because of a high value of p, the off-diagonal terms are comparable to the diagonal terms.

where M is the total number of projector columns.

Figure 12 shows the mean column decoding error for

different pairs of schemes, under different noise levels.

Most of the errors are less than 1 pixel, with the max-
imum being 1.67 pixels. While this analysis was done

for a projector with 1024 columns, it can be extended

in a similar way for a different number of columns.

6 Experiments and Results

In our experiments, for phase-shifting, we project 18
patterns (3 frequencies, 6 shifts for each frequency). For

modulated phase-shifting [7], we project 162 patterns

(9 modulated patterns for each phase-shifting pattern).

For our ensemble codes, we project a total of 42 pat-

terns - 10 patterns for each of the 4 codes, 1 all-white
pattern and 1 all-black patterns. Images captured un-

der the all-white and all-black illumination patterns are

used to establish per-pixel intensity thresholds for bi-

narization.

Scenes with subsurface scattering and defocus:
Figure 6 shows a scene consisting of industrial parts.

Due to defocus, the high frequency patterns in the con-

ventional Gray codes can not be decoded reliably, re-

sulting in a loss of depth resolution. Depth map com-

puted using maximum min-SW Gray codes does not

suffer from loss of depth resolution. Figure 13 and 14

shows objects and scenes with strong subsurface scat-
tering. Translucent materials are often characterized by

low direct component. Since modulated phase shift-

ing [7] relies on explicitly separating the direct and

the global components, it suffers from low signal-to-
noise-ratio for highly translucent materials. The result-

ing depth maps are severely degraded due to noisy. On

the other hand, our code ensemble does not rely on ex-

plicit direct-global separation, resulting in significantly

better reconstructions.

Scenes with diffusion:Next, we consider scenes which

have only long range effects. Figures 15 and 16 show

scenes comprising thin, nearly transparent surfaces. In
both cases, light diffuses through the material and is

reflected from the background/interior, creating long-

range optical interactions. Consequently, conventional

Gray codes and phase-shifting result in large errors in
the reconstructed shape. In contrast, our codes achieve

high quality reconstructions. For some moderately dif-

ficult scenes, such as the shower curtain in Figure 15,
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Error probabilities for the code ensemble algorithm (p=0.3)

Fig. 10 Error analysis of our code ensemble algorithm (Section 5.1). First and third rows: Joint error probability matrices
for different pairs of schemes, for different values of p. Most of the off-diagonal values are of the order of 10−6. Second and fourth
rows: Sum of rows of the joint error probability matrices. The resulting plots are the probabilities that the code ensemble algorithm
will result in a decoding error for the corresponding projector column. Most of the probability values are less than 1%.

(CG, MM-SW) (CG, XOR04) (CG, XOR02) (MM-SW, XOR04) (MM-SW, XOR02) (XOR04, XOR02)

p=0.05 0.2% 0.9% 0.9% 0.2% 0.1% 0.8%
p=0.1 0.3% 1.4% 1.4% 0.3% 0.2% 1.2%
p=0.3 1.4% 0.3% 0.3% 0.1% 0.1% 0.3%

p=0.5 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Fig. 11 Mean error probabilities for the code ensemble algorithm. This table gives the mean probabilities of a pair of
schemes making the same decoding error. These are computed by taking the mean of the error probabilities for all the projector
columns (Figure 10, second and fourth rows). Most of the values are less than 1%, with the maximum being 1.4%.

(CG, MM-SW) (CG, XOR04) (CG, XOR02) (MM-SW, XOR04) (MM-SW, XOR02) (XOR04, XOR02)

p=0.05 0.01 1.03 1.03 0.02 0.02 1.06
p=0.1 0.06 1.67 1.67 0.07 0.07 1.74
p=0.3 0.25 0.52 0.51 0.29 0.28 0.56
p=0.5 0.33 0.33 0.33 0.33 0.33 0.33

Fig. 12 Mean decoding error (in pixels) for the code ensemble algorithm. A decoding error results in an incorrect depth
estimate. The magnitude of the depth error is directly proportional to the column error |a− b|, where a is the correct column number
and b is the decoded (incorrect) column number. This table gives the mean column decoding errors for different pairs of schemes. Most
of the errors are less than 1 pixel, with the maximum being 1.67 pixels.
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(a) Object (b) Modulated PS (c) Code ensemble (d) Object (e) Modulated PS (f) Code ensemble

Fig. 13 Reconstructing translucent wax objects: Translucent materials (a,d) are often characterized by low direct component.
Since modulated phase shifting relies on explicitly separating the direct and the global components, it suffers from low signal-to-noise-
ratio for highly translucent materials. The resulting depth maps are very noisy (b,e). On the other hand, our code ensemble does not
rely on explicit direct-global separation, resulting in better quality reconstructions (c,f).

(a) Candles and flower vase (b) Conventional Gray codes (c) Modulated phase shifting (d) Our code ensemble

Fig. 14 Candles and flower-vase: (a) The scene consists of a flower vase and some wax candles. The flower vase is made of stained
glass, resulting in diffusion of light. The wax candles have subsurface scattering. Depth from phase shifting (b) has errors on the flower
vase, while modulated phase shifting results in errors on the candles (c). Depth map using our code ensemble (d) is nearly error free.
Please zoom in for details.

(a) Shower curtain (b) Conventional Gray codes (c) Phase shifting (d) The XOR-04 codes

Fig. 15 Shower-curtain: (a) Light diffuses through the curtain and is reflected from the background, creating long-range optical
interactions. Consequently, (b) conventional Gray codes and (c) phase-shifting result in large errors and holes in the estimated shape.
The correct shape of the curtain is nearly planar, with small ripples. (d) Reconstruction using our logical XOR-04 codes is nearly error
free, with the same number of input images as the conventional Gray codes.

(a) Ikea lamp (b) Conventional Gray codes (c) Our code ensemble (d) Visualization of (c)

Fig. 16 Reconstructing an Ikea lamp: The lamp is made of thin translucent paper. Light diffuses inside the lamp, bounces inside
and comes back out. (b) Conventional Gray codes result in errors near the periphery of the lamp. (c) Depth map using our code

ensemble. (d) 3D visualization of (c).
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(a) Fruit-basket (b) Conventional Gray (11 images)

(c) Phase shifting (d) Modulated phase shifting [7]
(18 images) (162 images)

(e) Code ensemble (42 images) (f) 3D Visualization for (e)

Fig. 17 Measuring 3D shape of a fruit-basket (inter-
reflections+subsurface scattering). (a) This scene has both
interreflections (corner of the fruit-basket) and subsurface scat-
tering on the fruits. (b-c) Conventional Gray codes and phase-
shifting result in errors due to interreflections. (d) On the other
hand, modulated phase shifting produces errors on the translu-
cent fruits due to low direct component. (e) Our technique using
an ensemble of codes results in significantly fewer errors. Paren-
theses contain the number of input images.

it is sufficient to use only one of our codes, instead of

the full ensemble.

Scenes with multiple global illumination effects:
Now, we show scenes which have multiple global illumi-

nation effects (but each scene point receives either long

or short range effects). Figures 1 and 8 show a scene

consisting of a bowl on a marble slab. Depth estimates

using individual codes (Figures 8(a-d)) have errors due
to various global illumination effects. The depth esti-

mate using our code ensemble has significantly fewer

errors. Corresponding 3D reconstructions are shown in

Figure 1. Interestingly, by analyzing the errors made
by the individual codes, we can infer qualitative infor-

mation about light-transport, as shown in Figure 8 (f).

Points marked in green correspond to translucent ma-

(a) Bowls and milk (b) Conventional Gray (11 images)

(c) Phase-shifting (18 images) (d) Code ensemble (42 images)

3D Visualizations for (d)

Fig. 18 Depth map computation for the bowls and milk
scene (interreflections+subsurface scattering). (b) Con-
ventional Gray codes and (c) phase-shifting result in errors at
points receiving strong interreflections. (d) Result of our code
ensemble.

terials. Points marked in light-blue receive strong inter-

reflections.

The scenes in Figures 17 and 18 have both inter-

reflections and subsurface scattering. Modulated phase-

shifting performs poorly on translucent materials, whereas

conventional Gray codes and phase-shifting produce er-
rors in the presence of interreflections. In contrast, re-

construction produced using our ensemble of codes has

significantly reduced errors.

Finally, we consider scenes which have points that

receive both short and long range effects. Figure 19
shows results for a cup made of styrofoam. Since styro-

foam is weakly translucent, points inside the cup receive

both subsurface scattering and strong interreflections.

Conventional Gray codes produce large errors in the
recovered shape. The spatial frequencies of our max

min-SW Gray codes are not sufficiently high to pre-

vent errors. However, accurate shape is recovered us-
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(a) Styrofoam cup (b) Conventional Gray codes (c) Max min-SW Gray codes (d) Code ensemble

Fig. 19 Styrofoam cup (interreflections+subsurface scattering): Styrofoam is weakly translucent. Points inside the cup receive
both subsurface scattering and strong interreflections. (b) Conventional Gray codes produce large errors in the recovered shape. (c)
The spatial frequencies of our max min-SW Gray codes are not sufficiently high to prevent errors. (d) Accurate shape is recovered
using our code ensemble because of the presence of high-frequency XOR-02 and XOR-04 codes.

ing our code ensemble because of the presence of high-

frequency XOR-02 and XOR-04 codes. Figure 20 shows

depth recovery results for a wax bowl. Points inside the

bowl receive strong subsurface scattering. Since the in-
terreflections are weak (the bowl is shallow), the code

ensemble produces an accurate shape. For more results

and high-resolution images, see the project web-

page [1].

Figure 21 shows a failure case - a deep container

made of highly translucent wax. In this case, points

inside the container receive both strong interreflections
and strong subsurface scattering. Since none of the four

codes compute the correct shape, the code ensemble

fails to reconstruct the object.

Comparisons with Couture et al. [8]: Recently,
Couture et al. [8] proposed an approach to deal with

interreflections by projecting a large number (200) of

random high-frequency patterns on the scene. Figure 22

shows comparisons of their approach with our XOR-04
codes, which are designed to deal with interreflections,

and have similar spatial frequencies as used in [8]. Since

all three scenes have strong interreflections, the con-

ventional Gray codes result in large errors. The ran-

dom high-frequency codes successfully remove the er-
rors. The XOR-04 codes produce results of the same

accuracy, while requiring an order of magnitude fewer

images (12 versus 200).

7 Error detection and correction

The patterns presented in the previous section can suc-
cessfully prevent a large fraction of errors. For highly

challenging scenes, however, some errors might still be

made. An example is shown in Figure 23. This object is

(a) Wax bowl (b) Code ensemble

Fig. 20 Wax bowl (interreflections+subsurface scatter-
ing): (a) Points inside the bowl receive weak interreflections (the
bowl is shallow) and strong subsurface scattering. (b) Shape com-
puted using the code ensemble algorithm.

(a) Deep wax container (b) Code ensemble

Fig. 21 Deep wax container (failure case): Points inside the
container receive both strong interreflections and strong subsur-
face scattering. Since none of the four codes compute the correct
shape, the code ensemble fails to reconstruct the object.

a concave lamp made of brushed metal. This is a chal-

lenging object for active shape recovery systems due

to strong, high-frequency interreflections. Figure 24 (e)
shows the reconstruction results using our code ensem-

ble. While the reconstruction is better as compared to

individual codes, a significant amount of errors remain.



20

Scene Conventional Gray Our XOR-04 codes Codes in [8]
(12 images) (12 images) (200 images)

‘Ball’ Scene

‘Games’ Scene

‘Corner’ Scene

Fig. 22 Comparisons with Couture et al. [8]: First column shows scenes with interreflections. Second column shows shape
recovered with conventional Gray codes. Since all the scenes have strong interreflections, conventional Gray codes result in large errors
(marked in red). The random high-frequency codes [8] successfully remove the errors, as shown in the third column. The XOR-04
codes produce results of the same accuracy (fourth column), while requiring an order of magnitude fewer images (12 versus 200).

For building a reliable shape measurement system, it is

critical to detect and correct these residual errors.

Traditionally, error detection and correction strate-

gies from communication theory have been adopted in

the context of structured light. An example is the Ham-

ming error correcting codes used by Minou et al. [24].

These techniques treat structured light coding-decoding
as a signal transmission problem. Although good for

handling random sensor/illumination noise, these codes

can not handle the systematic errors made due to global

illumination. In this section, we present strategies for
detecting and correcting such errors.

7.1 Error detection

Our error detection algorithm is based on a simple ob-
servation. The consistency check proposed in the pre-

vious section, in addition to preventing errors, can also

be used for detecting errors. For a pixel, if none of the

four codes agree, it is marked as an error pixel, as illus-

trated in Figure 24 (f). It is possible that one of the four
values might be the correct value. However, as there is

an error correction stage to follow, we take a conserva-

tive approach and classify such pixels as error pixels.

Since no extra patterns need to be projected, the error

detection stage does not place any overhead in terms of
acquisition time.

Park et al. [31,30] use similar consistency checks

across range scans acquired from different view points.
By registering different scans and comparing the val-

ues from different scans, they remove spurious measure-

ments due to specular interreflections. In contrast, our

technique does not require moving the acquisition setup

or the object.

7.2 Error correction

To correct the errors, we iteratively collect additional

images while illuminating only the scene points corre-
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Algorithm 1 Structured Light Scanning in the Pres-

ence of Global Illumination
1. Project patterns and capture images for the 4 codes - two

Gray codes (Conventional Gray and Gray codes with max-
imum min-SW), and the two logical codes (XOR02 and
XOR04).

2. Compute depth values for the two Gray codes using conven-
tional decoding and the two logical codes using the logical
decoding (Section 4.1).

3. Apply a median filter (e.g., 3× 3 or 5× 5) to the individual
depth values to prevent propagation of aliasing errors.

4. Compare the depth values. If any two codes are consistent,
return that value as the correct depth. If the two Gray codes
are consistent, return the value computed by the maximum
min-SW Gray codes (Section 5).

5. Error detection: Mark the camera pixels where no two
codes agree as error pixels (Section 7). An example is shows
in Figure 24.

6. Error correction: Mask the patterns so that only the scene
points corresponding to the error pixels are lit [37]. Repeat
steps 1 − 5 to progressively reduce the residual errors (Sec-
tion 7, Figure 24).

sponding to the error pixels. This technique, based on

the work of Xu et al. [37], progressively reduces the

amount of global illumination, resulting in reduction of

the error pixels. In the subsequent iterations, the scene
points which are already decoded correctly are not il-

luminated. This is achieved using illumination masks,

as shown in Figures 24 (g,h). By progressively reducing

the number of points getting illuminated (and hence,
interreflections), the residual errors are reduced. By ac-

quiring images in 2 extra iterations 11, we achieve a

nearly perfect reconstruction.

Conventional Gray codes can not reconstruct a large

portion of the object. Separation based modulated phase-

shifting [7] can not remove the high-frequency inter-

reflections, resulting in large errors. The mean absolute
errors as compared to the ground truth for our result,

conventional Gray codes and modulated phase-shifting

are 1.2mm, 29.8mm and 43.9mm respectively (height

of the lamp = 250mm), respectively. The ground truth

was acquired by manually binarizing the captured im-
ages.

It is important to note that for this error correction
strategy to be effective, the error prevention and detec-

tion stages are critical. Since our techniques correctly

reconstruct a large fraction of the scene in the first it-

eration itself, we require only a small number of extra
iterations (typically 1-2) even for challenging scenes.

In comparison, the approach presented in [37] requires

a large number of iterations (10-20) and images (500-

800). This is because it uses conventional Gray codes,

11 We projected only the logical codes in subsequent iterations,
thus requiring 122 images in total.

(a) Concave Metal Lamp

Fig. 23 Concave metal lamp: A highly challenging object due
to strong, high-frequency interreflections.

which do not prevent errors in the first place. Secondly,

its error detection technique, based on direct-global sep-

aration, is conservative. Consequently, if the direct com-

ponent is low (for example, in the presence of subsurface

scattering), this technique may not converge.

8 Discussion and Limitations

Frequencies of the projected patterns: Our meth-

ods make the following assumptions on the light trans-

port in the scene. The high-frequency codes assume that

light transport is locally smooth. The low-frequency
codes assume that the light transport is local. If both

these conditions are violated simultaneously, our tech-

niques will produce incorrect results. For example, if a

scene has mirror interreflections, or if the extent of sub-

surface scattering is significantly larger than the mini-
mum stripe width of max min-SW codes, our techniques

might fail to reconstruct the scene accurately.

This limitation is because we have classified the light

transport effects two way into long and short range.
Patterns with a continuous set of frequencies can be

used for handling a larger class of scenes. For exam-

ple, it is possible to construct different band-pass codes

by doing the XOR operations. Instead of only XOR-

02 and XOR-04 codes, depending on the scene, XOR-
08, XOR-16, XOR-32 codes can be used. Alternatively,

sinusoidal patterns can be used as they provide more

flexibility in controlling spatial frequencies. Ultimately,

there is a trade-off between acquisition speed and the
range of scenes that can be handled. Four sets of pat-

terns with extreme frequencies can be considered to be

the minimal set.
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(a) Conventional Gray (b) Max min-SW Gray 

(c) Logical XOR-4 (d) Logical XOR-02 

Consensus-checking among the code ensemble 

Any Two Codes 

Consistent 

No Two Codes 

Consistent 

(e) Depth from Ensemble 

(f) Error map (Red Pixels) (i) Depth Map 

First Iteration 

(g) Illumination Mask 

Second Iteration 

(h) Illumination Mask 

(j) Depth Map 

Error detection using consistency check Error correction

(k) Conventional Gray codes (l) Modulated phase shifting (m) Our code ensemble (n) After error detection
(11 images) (162 images) (42 images) and correction (122 images)

Fig. 24 Error Detection and Correction: (a) We use the same consistency check as in the code ensemble algorithm for detecting
errors. (a-d) Four depth maps using the individual codes. (e) Depth using the code ensemble algorithm has a significant amount of

residual errors. (f) For a pixel, if no two codes agree on a depth value, it is marked as an error pixel (red). Since no extra patterns
are projected, the error detection stage places no overhead in terms of acquisition time. In the subsequent iterations, the scene points
which are already decoded correctly are not illuminated. This is achieved using an illumination masks (g,h). By progressively reducing
the number of points getting illuminated (and hence, interreflections), the residual errors are reduced [37] (i,j). This object is very
hard to reconstruct with existing schemes (k,l). Using our techniques, we achieve a high quality reconstruction (n). The mean errors
for our result (n), conventional Gray codes (k) and modulated PS (l) are 1.2mm, 29.8mm and 43.9mm respectively (height of lamp
= 250mm). The parentheses contain number of input images.

What are the good spatial frequencies to use? An-

swering this requires a more thorough theoretical anal-

ysis of the frequencies of light transport. While such

an analysis is hard for general scenes, we believe that
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studying the statistics for light transport for natural

scenes will provide useful insights. This forms a promis-

ing direction of future research.

Single dominant mode of light transport: Our
techniques assume a single dominant mode of light trans-

port for every scene point. If a scene point receives both

strong short-range and long-range effects, for example,

inside of a strongly translucent and deep bowl, none of

the codes will produce the correct result. An example
is shown in Figure 20. In this case, the code ensemble

algorithm and the error correction step will not be able

to retrieve the correct result. Our techniques can not

handle scenes in the presence of participating media as
volumetric scattering also results in both short-range

and long-range interactions.

Qualitative classification of light transport: The

qualitative classification of light transport shown in Fig-

ure 8 is specific to the projector camera configuration.
So far, we haven’t reached a stage where this classi-

fication can provide reliable quantitative information

about the scene. For example, most of the points inside

the bowl receive interreflections. But since this classi-
fication is based on the errors that the code ensemble

algorithm makes, only a few points are classified as re-

ceiving interreflections.

Conventional Gray codes as short-range codes:

In our code ensemble, we have considered conventional
Gray codes as being resistant to short-range effects.

This is an approximation. Due to local effects, the higher

frequency images in the conventional Gray codes will

get blurred, and might not be decoded correctly. How-
ever, since the high-frequency patterns correspond to

the lower significance bits, the resulting errors are small

(e.g., < 4 pixels if the last two patterns are lost). Hence,

in the consistency check step, the result of conventional

Gray codes will still agree with that of the max min-
SW Gray codes. In this case, the value computed by the

minimum min-SW codes is returned. A future research

direction is to design more codes with large minimum

stripe widths.

Acquisition speed: Our techniques are currently lim-

ited to binary codes (monochrome and color) and thus

require capturing several tens of images, making them

unsuitable for dynamic scenes. The number of input im-

ages can be decreased by having more than two inten-
sity levels in the projected images. An interesting direc-

tion of future work is to extend our techniques to N -ary

(N > 2) codes and continuous schemes, such as phase

shifting, which require fewer images as compared to dis-
crete binary patterns. The number of images can also

be reduced using a priori knowledge about the scene.

For example, if the scene is known to have only inter-

reflections, then it is sufficient to use only the logical

codes, e.g., XOR-04. If, however, no a priori knowledge

about the scene is available, then the code ensemble

should be used.
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