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Abstract

Most photometric stereo approaches assume distant or
directional lighting and orthographic imaging. However,
when the source is divergent and is near the object and the
camera is projective, the image intensity of a Lambertian
object is a non-linear function of both the unknown sur-
face normals and the unknown distances of the source to
the surface points. The resulting non-linear optimization
is non-convex and highly sensitive to the initial guess. In
this paper, we propose a two-stage near-light photometric
stereo method using circularly placed point light sources
(commonly seen in recent consumer imaging devices like
NESTcam, Amazon Cloudcam, etc). We represent the scene
using a 3D mesh and directly optimize the vertices of the
mesh. This reduces the complexity of the relationship be-
tween surface normals and depths in the image formation
model. In the first stage, we optimize the vertex positions
using the differential images induced by small changes in
light source position. This procedure yields a strong initial
guess for the second stage that refines the estimations using
the raw captured images. We propose an accurate calibra-
tion approach to estimate the positions of the sources. Our
approach performs better on simulations and on real Lam-
bertian scenes with complex shapes than the state-of-the-art
method with near-field lighting.

1. Introduction
Recovering surface shape is important for a wide range

of applications such as robot manipulation, cultural her-
itage digitization and skin surface analysis etc. Photometric
stereo methods use shading cues from images captured with
varying illumination to recover surface shape. Traditional
photometric stereo methods assume that light sources are
distant, thus the lighting directions for all scene points are
parallel. This is true for light sources such as the sun or for
indoor lights placed far away from small objects. Under the
distant light assumption, we are able to linearly solve the
surface normal given the image intensities with calibrated
or uncalibrated light source directions.

However, the distant light source assumption fails when

the object-to-light distance becomes small. In the near-light
setting, the image intensity depends non-linearly on the 3D
location and normal of the scene point as well as the 3D
light source position. Furthermore, for objects close to a
perspective camera, the widely assumed orthographic pro-
jection model also fails. In this case, the relation between
the surface normal and the depth of a scene point, which are
often defined in image coordinates (at each pixel), becomes
more complex when back-projected to 3D. Thus, solving
for the 3D shape of an object that is illuminated by near
light sources and that is captured by a projective camera is
a highly non-linear and non-convex problem. As a result,
photometric reconstruction often fails without strong initial
guesses, as shown in Fig.1 (d).

In this paper, we present a near-light photometric stereo
algorithm with circularly-placed point light sources and a
perspective camera. This algorithm includes three novel
contributions. First, we model the scene as a 3D trian-
gulated mesh whose vertices correspond to the observed
pixels, and directly optimize the positions of the vertices.
The key advantage of this representation is that the vertex
normals can be simply computed using adjacent triangular
faces of the 3D mesh. The alternative of representing sur-
face normals as numerical derivatives of depths in image
coordinates (e.g. N = (zx, zy, 1)) results in unnecessary
complexity when back-projected to 3D. Second, we split
the algorithm into a two-stage process. In the first stage,
we solve photometric stereo using the differential images
captured by changing the light source position in a small
amount along a circular path. We show that the analyti-
cal form of how the vertex position is related to measured
differential intensity is less complex and results in reliable
estimates in most parts of the object. In the second stage,
these vertex positions are refined using the original image
formation model applied to the raw captured images.

The above algorithm is still sensitive to errors in cal-
ibration. The light source positions in 3D are often ob-
tained using multiple specular spheres of known radii and
locations[21, 14]. But the 3D positions of these specular
spheres are hard to measure accurately, resulting in poor lo-
calization of the sources for the proposed algorithm. Thus,
as a third contribution, we present a simple calibration ap-
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Figure 1. Near-Light Photometric Stereo using LED light sources placed in a planar circular ring centered around the camera lens (a) The
profile for the reconstructed object; (b) Our imaging setup with a 30 mm radius ring of 24 LEDs; (c) One of the 24 input images; (d) Due
to non-convexity of the near-light photometric stereo problem, reconstruction using [22] fails for depth initialization far away from the true
values. (d) Reconstruction using our two-stage method that directly optimizes a 3D mesh. The depths and surface normals are estimated
as described in Sec.3, with initializations estimated using the method in Sec.4.

proach that uses a flat panel display to estimate the source
positions. The flat panel display specularly reflects light,
and unlike spheres, can be calibrated precisely for position
and orientation using camera calibration methods [13].

Together, the three contributions lead to effective per-
formance on both synthetic and real scenes with complex
shapes placed at various distances from the source/camera.
Our method outperforms previous state-of-the-art in near-
lighting photometric stereo, where the optimization suf-
fers from poor initial guess (see Fig.1). Our approach also
outperforms distant-light photometric stereo methods, even
when the distance of the object is several times (5X-10X)
than the radius of the LED ring. As a side effect of us-
ing differential images, our method tends to perform better
in the presence of diffuse inter-reflections (but we make no
claim on eliminating these effects). Our system is portable
and can be implemented using a small off-the-shelf LED
ring. Thus, we believe this work is timely enabling pho-
tometric 3D reconstruction on consumer imaging devices
like Cloud-cam, Nest-cam that increasingly use small LED
rings for imaging nearby indoor and outdoor scenes.

2. Related Work

Photometric Stereo with Distant Light Sources: Since
the first formulation of the Photometric Stereo problem in
[26] for shape reconstruction, there have been numerous
works on improving and generalizing the method by tak-
ing into account different aspects during image formation,
camera calibration and light source variations. In [18], the
shape is recovered using inter-reflections by modeling the
inter-reflections with form factor. For translucent objects,
subsurface scattering has been taken into account in [8] and
[11]. The volumetric scattering for the under-water imaging
scenario is modeled in [17]. A good survey and benchmark

dataset can be found in [23]. Light intensity calibration er-
ror has been considered in [6]. The solution space for Pho-
tometric Stereo and the ambiguity in the recovered shape
have been discussed in [3, 4].

Photometric Stereo with Near-field Sources: The par-
allel illumination direction assumption fails when the light
source is close to the object. In this case, the light source
is modeled as a point light source (quadratic fall-off) and
the illumination direction depends on the 3D location of the
scene point. In [22], a variational method is proposed to
solve the inverse problem. In [19] and [15], the near-light
photometric stereo is solved without calibrating the light
source. In [25], a thorough analysis for reconstruction error
in the near-light setup is performed. All these approaches
are highly sensitive to initial guesses and do not use dif-
ferential lighting based approach proposed in this work. In
[27] and [24], the near-light photometric constraint is added
to the multi-view scene reconstruction pipeline from images
captured with different camera views. In contrast, our work
is based on a single perspective view.

Photometric Stereo using Differential Lighting: In
[16, 9, 12, 10], gradient illumination implemented either
with a light dome or a ring of LEDs is used for surface re-
construction of human faces. In [30], the ring LED setup
is used as an additional constraint during reconstruction. In
[5], the differential motion of light source in the 1D circular
trajectory is used for reconstructing surface with unknown
BRDF. But in all these works, the sources are assumed to
be distant. Most closely related is the work of [7] where the
scene depth is solved directly using images captured with
small near-field point light source motion. However, in or-
der to solve for the scene depth, 3 motion directions are
needed for each light source position. In contrast, the tra-
jectory of the point light sources in our case is just a 1D
curve, i.e. a planar circular ring, with 2 degrees of freedom
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Figure 2. Image formation with near-field light source and a pro-
jective camera. For each pixel p, there is only one variable depth
z(p). Given K, the position of the point in 3D is x = K−1pz.
Its surface normal n(p) is determined by z(p) and the depths of
its surrounding points as describe in Sec.3.

less for the light source motion compared to [7].
Our method is closely related to Xie et al. [28], where

the near-light photometric stereo problem is formulated in
terms of mesh deformations. Our method is different from
[28] in three aspects: (1) We model the scene with 3D tri-
angular meshes and optimize the depths of the vertices di-
rectly. The surface normals are determined directly from the
3D positions of the vertices. So there is only one variable
for each pixel. Xie et al. [28] represent the scene as a rect-
angular mesh with both the surface normals and depths as
variables (similar to many other previous works). So there
are three variables for each pixel, making it harder to op-
timize. This is redundant since for a mesh representation,
normals are completely determined by vertice positions; (2)
The method in [28] assumes orthographic camera model.
Thanks to the scene representation, our method works for
perspective cameras; (3) Because we determine the surface
normal from the vertice depths, our method does not rely on
mesh deformation to get the depths from surface normals,
as in [28]. This leads to robustness to depth discontinuities
for our method.

3. Near-Light Photometric Stereo on a 3D
Mesh

In this section, we describe the image formation model
for near-light photometric stereo of a Lambertian object il-
luminated by point light sources and captured by a perspec-
tive camera. Without loss of generality, we set the origin for
the world coordinate frame to be the center of the camera,
as shown in Fig. 2. The albedo and the surface normal for a
scene point are denoted by ρ and n. The point source is at
location s. Then radiance R of a scene point at x is:

R = ρse
nT (s− x)

|s− x|3
= ρ̃

nT (s− x)

|s− x|3
, (1)

where se is the light source intensity; ρ̃ = ρse is the scaled
albedo. The cubic in the denominator accounts for the nor-
malization for the incident light vector and the quadratic
fall-off of light intensity in the point light source model.

The scene point is imaged by a camera with intrinsic ma-
trix K. We define the homogeneous image coordinate for
the point x projected on the image plane to be p. For a
scene point with depth z, the image coordinate p and the
world coordinate x are related by back-projection:

x = K−1pz (2)

Combining Eq.1 and Eq.2, the image intensity I(p; z,n)
for the scene point x can be written as:

I(p; z,n) = ρ̃
max{nT (s−K−1pz), 0}

|s−K−1pz|3
, (3)

where, attached shadow is modeled using the max operator.
It is hard to optimize for surface normals and depths as

separate unknowns. Thus, we need to exploit their rela-
tionship. However, representing surface normals as numer-
ical derivatives of depths in image coordinates (e.g. N =
(zx, zy, 1)) results in unnecessary complexity when back-
projected to 3D. Instead, we represent the scene as a 3D
mesh with triangular faces F whose vertices V are defined
for all image pixels. We then use the vertex normal for cal-
culating the image intensity in Eq. 3. This process is illus-
trated in Fig. 3(a). The 3D location of the vertex vi is xi and
its 2D imaged location is p(vi). Given the depth z(vi) for
vertex vi, x(vi) is given by x(vi) = K−1p(vi)z(vi). An
adjacent face f consists of vi and two other vertices vj and
vk. The edges connecting vi to vj and vk are eij = xj −xi

and eik = xk − xi respectively. Then, the unnormalized
vertex normal for vi is defined as:

n̂(vi) =

∑
f∈Nf (i)

a(f)n(f)∑
f∈Nf (i)

a(f)
=

∑
f∈Nf (i)

[eij ]× eik∑
f∈Nf (i)

a(f)
(4)

where Nf (i) are the neighboring faces that include vertex
vi; n(f) and a(f) are the normal and area for face f . The
vertex normal n(vi) is obtained by normalizing n̂(vi):

n(vi) = n̂(vi)/|n̂(vi)| (5)

We solve for the depths of the vertices by combining im-
age formation model in Eq.3, Eq.4 and Eq.5. However,
there remains a depth ambiguity for vertex vi if we use
the normal definition in Eq.4. Consider the cases shown
in Fig. 3(b) and (c). The faces around vertex vi are related
by rotations around the vertex normal nv . Because the face
areas are the same, the horizontal components of the sur-
face normals of the neighboring faces are canceled out in
the weighted sum in Eq.4. So the vertex normals in two
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Figure 3. Local geometry around vertex vi. (a) The surface nor-
mal at vertex vi, colored in red, depends on the depths of its ring-1
neighborhoods, colored in green; (b) We define the surface nor-
mals to be the vertex normal n(vi), which depends on the face
normals of meshes sharing vi (c) The original vertex normal def-
inition leads to ambiguity in the depth estimation for vi. We deal
with this ambiguity using the method presented in Sec.3.

cases both point perpendicularly upwards, even though the
locations for vertex vi and the face normals are different.

We solve this ambiguity by changing the order of shad-
ing in Eq.3 and computing the weighted averaged in Eq.4:
we first compute the image intensities for each face around
vertex vi, then compute weighted average of intensities to
get the intensity for vertex vi. More formally, the image
intensity I(vi; z(vi)) for vertex vi is re-written as:

I(vi; z(vi)) = ρ̃

∑
f∈Nf (i)

a(f)S
(
s, K̂, z(vi), f

)
|s− K̂(vi)z(vi)|3

∑
f∈Nf (i)

a(f)
, (6)

with K̂ = K−1p(vi) and the shading operator defined as:

S
(
s, K̂, z(vi), f

)
= max{nT (f)(s− K̂z(vi)), 0}

3.1. Objective Function

We estimate the depth values for all vertices by minimiz-
ing the difference between the modeled intensities I in Eq.6
and the measured image intensities Ĩ:

min.
z

∑
vi∈V

(
Ĩ(vi)− I (vi; z(vi))

)2
+ λIEs(z(vi))

with Es (z(vi)) =
∑

vj∈Nv(i)

(z(vi)− z(vj))2
(7)

where Nv(i) is the set of vertices in the Ring-1 neighbor-
hood of vi. The albedo ρ̃ is solved analytically using Eq.6.

The energy function for the optimization problem de-
fined in Eq.7 has a numerous local minima due to the cubic
term in the denominator in I(vi; z(vi)) defined in Eq.6. So,
good initializations of the depth values at vertices is crucial,
as validated using experiment shown in Fig.4. The face of a

100 mm 400 mm250 mm

(a) Two of 24 input images (b) Object profile

(c) Surface reconstructions with different depth initilizations

Figure 4. Sensitivity of the optimization of depths of vertices to
initial guesses with planes in different depths. The light sources
are a 30 mm radius ring of 24 LEDs centered around the camera.
The object is placed 200 mm away from the camera. (a) Two out
of 24 input images, with the LED positions at the lower left corner.
(b) The profile of the reconstructed area for reference. (d) The
profiles of the surfaces reconstructed with different initial depths.

toy is reconstructed using the L-BFGS minimizer for Eq. 7
with different initial depth values. We use a ring of 24 LEDs
centered around the camera. The radius of the LED ring is
30 mm and the object is placed around 200 mm away from
the camera. More details about the implementation are in-
cluded in Sec.6. As shown in Fig.4, if the initialization of
depths is far away from the true values, we get either over-
flattened or stretched results due to the local minima.

4. Near-Light Photometric Stereo with Differ-
ential Circular Source Motion

In order to get a good initial guess for the optimization
problem in Eq.7, we put forward to use the differential im-
ages induced by small change of light source position. The
illumination and imaging geometry is shown in Fig. 5. For
notation simplicity, for LED at position s and with index t,
we denote the differential source motion as st and the corre-
sponding differential image intensity as It, which means the
differential values w.r.t to the LED index. By differentiat-
ing the image formation model in Eq.1, we get the analytical
form for the differential image intensity It:

It =
∂I

∂s
st

= ρ̃
nT st
|s− x|3

− 3nT (s− x)
ρ̃(s− x)T st
|s− x|5

= ρ̃
nT st
|s− x|3

− 3I
(s− x)T st
|s− x|2

(8)
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Figure 5. The geometry of differential change of light source po-
sitions. The light sources are densely mounted on a planar circle
centered around the camera.

which can be simplified by writing the first term as a func-
tion of the image intensity I:

It = I
nT st

nT (s− x)
− 3I

(s− x)T st
|s− x|2

(9)

Intuitively, the first term is the contribution of the change
of source direction; the second term is due to the change of
distance between the light source and the scene point.

For light sources mounted on a plane parallel to the im-
age plane, there are two special cases where the second
term including the inverse squared distance in Eq.9 becomes
small and can be ignored.

The first case occurs when the angle between the light
direction s−x and the light source motion vector st is large
such that (s − x)T st ≈ 0. This happens when the object
is placed far away from the light source such that s − x is
perpendicular to the light source plane spanned by st. How-
ever, for large distance between the light source and scene
point, both the captured image intensity I and the differen-
tial image intensity It would be too small with low SNR.

The second case where we can ignore the second term in
Eq.9 is when the source motion trajectory is circular. Here,
the source motion direction st and position s are perpendic-
ular, thus sT st = 0. So, the differential image intensity It
in Eq.9 becomes:

It = I
nT st

nT (s− x)
+ 3I

xT st
|s− x|2

(10)

For a camera with a traditional field of view, the angle
between the direction of line of sight and the normal of im-
age plane is small. Since the plane spanned by st is paral-
lel to the image plane, xT st in the second term in Eq.10
becomes small. The term xT st is further attenuated by
the squared distance between the point and the light source
|s − x|2. So we can assume that the second term in Eq.10
for small light source motions can be ignored, at least for
the purposes of estimating our initial guess.

Thus, the differential image intensity and the measured
image intensity are related by:

InT st − ItnT (s− x) = 0 (11)

This is similar to the differential image term in [5] for the
Lambertian case. The difference is that we can solve for the
depths using Eq.11 alone rather than obtaining a constraint
for the surface normal as in [5].

More specifically, given the measured image Ĩ and dif-
ferential image Ĩt, the depths can be estimated by:

min.
z

∑
vi∈V

EIt(vi; z(vi)) + λItEs(z(vi)) (12)

with

EIt(vi; z(vi)) =
(
n̂(vi)

T
(
Ĩ(vi)st − Ĩt(vi)(s− x(vi))

))2
x(vi) = K−1p(vi)z(vi)

Note that the energy function in Eq.12 is independent
from the inverse squared distance. Thus the energy func-
tion is less non-linear than the one in Eq.7. In addition,
since the function is independent from the albedo, given the
measured image intensities Ĩ and differential image Ĩt, we
can estimate the depths without knowing the surface albedo.

5. Complete Algorithm and Calibration
We use the optimized depth in Eq.12 as the initial values

in Eq.7 where we estimate the depth values with raw image
intensity I . To initialize the optimization problem in Eq.12,
we use a line search for the depth of each vertex. Given
the candidate depth value zc(vi), we can solve for the cor-
responding candidate surface normal nc using Eq.1. Then
we validate the candidate depth value zc(vi) and nc using
the differential image It with Eq.9. For each vertex, we
choose the candidate depth value that minimizes the differ-
ence between the measured and modeled It, to be the initial
depth. The complete near-light photometric stereo with cir-
cular placed LEDs is summarized in Algorithm.1.

5.1. Localizing Light Sources

It is important to calibrate the 3D light source posi-
tions accurately since we use the first-order derivative of the
source positions. The calibration error introduced by tra-
ditional calibration methods using one or multiple chrome
spheres will fail our algorithm, since the precise 3D location
and projected radius of the sphere in the image plane re-
quired by these methods are difficult to measure or calibrate
automatically. Instead, we propose a light source position
calibration method using a flat specular display: First, we
display the checkerboard pattern on a planar glossy display
such as the monitor of a Macbook and capture one image



Algorithm 1 Near-light Photometric Stereo with Circular
Placed LEDs

1: Given images I , differential images It, Camera In-
trinsic Matrix K, Light Source Positions S and Light
Source motion vectors St;

2: Initialize the depths with line search for each vertex.
3: Estimate the depths zIt using Eq. 12 ;
4: Initialize the albedo ρ̃It given zIt ;
5: Initialize: z(0)I = zIt , ρ̃(0) = ρ̃It , k = 0
6: for k ∈ {1, · · · ,MaxIter} do
7: Get z(k)I using Eq.7, with z(k−1)I , ρ̃(k−1) as the ini-

tials
8: Given z(k)I , solve for ρ̃(k) using Eq.6
9: end for

10: return zopt = z
(k)
I , ρ̃opt = ρ̃(k)

(a) Displayed Checkerboard

(b) Reflected Light Sources

Figure 6. We calibrate the camera and the point light source posi-
tions using a planar glossy display (Macbook monitor). (a)Images
captured with the display turned on and light source turned off,
from which we estimate the camera intrinsic matrix and plane pa-
rameters. (b)Superposition of the images captured when the dis-
play is turned off and the light sources are turned on.

for each setup of the plane, as shown in Fig.6(a). For each
plane orientation, we turn off the display and turn on the
LEDs sequentially and capture one image for each LED.

For each plane setup, we can get the plane parameters
(plane orientation and distance from the origin) from the
well-established camera calibration process [13]. Given the
camera intrinsic matrix and plane parameters , for each light
source reflection, we then estimate the light position by ray-
tracing and triangulating for the centers of highlights in the
light source reflection images shown in Fig.6(b).

We evaluate the performance of our calibration proce-
dure and compare it with the method using chrome spheres
[21]. To demonstrate the sensitivity of the calculated light
source locations w.r.t. the sphere center estimation, we eval-
uate the performance with/without using the ground truth
3D position of the sphere center. In the case where the
ground truth 3D position is unknown, we use the ellipse
detector in [20] to get the ellipse parameters. Then we ap-
proximate the ellipse to be round circle with center same

(a) x coordinate (b) y coordinate (c) z coordinate
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Figure 7. The xyz profiles of the locations for all point light
sources. Cyan - sphere chrome based method; The ellipse pa-
rameters are estimated using [20]; Green - sphere chrome based
method; The ground truth location of the sphere center is given.
Blue - Our method; Red - Ground truth.

as the ellipse center and radius as the mean of axes lengths
of the ellipse. Given the physical dimension of the sphere
and the camera focal length, we can get the depth and the
location of the sphere center as in [21]. The comparison
results in simulation are shown in Fig.7. As shown by the
cyan curve in Fig.7, inaccurate estimations for the 3D loca-
tions of sphere centers lead to large errors, especially in the
z direction. By contrast, our method is much more accurate.

6. Experiments

6.1. Implementation Details

We implement the differential motion of the light source
with an LED ring with 24 LEDs and 30 mm in radius. The
reconstructed objects are placed 300 - 400 mm away from
the camera and light sources. We use the Prosilica GT1930c
camera manufactured by Allied Vision to capture the im-
ages. Each image is captured with .1 second exposure time
with one LED turned on. The algorithm is implemented in
Python and C++, with the Ceres-Solver [1] for optimization.
For the energy functions defined in Eq.7 and Eq.12, we set
the weights for the smoothness term Es to be λI = .1 and
λIt = .01 respectively. For faster convergence, we perform
the optimizations in multiple scales where the results from
lower resolution are used as the initializations for the higher
resolution. The running time for 968×608 image resolution
is about 5 min using on a desktop with Intel Core-i7 5940
CPU and 64 GB RAM memory size. We will release the
implementation upon publishing.

6.2. Simulations Results

We test our algorithm with different imaging setups with
synthesized images. To validate the effectiveness of the
initialization using differential images, we place the recon-
structed surface at a plane with 900 mm depth, facing to-
wards the camera. We reconstruct the surface with and
without the first stage of the proposed method. For the com-
pared method with no initializations, we set initial depth to
be 200 mm. We run this comparison for multiple image
settings where the LED ring radius ranges from 20 mm to
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Figure 8. Ablation study for using the differential image It in Eq.12 with different LED ring radii. The mean depth for the object is 900
mm. For radius = 100 mm, we compare our method with photometric stereo with distant light assumption, and the method in [22]. (a)
Our method without and with the depth estimation using Eq.12 to initialize the depths for the optimization in Eq.7. Initialization using the
differential images in Eq.12 helps to improve the reconstruction, especially for smaller light source baselines. For both setups, the error
decreases with larger LED baselines. In our real experiment setup, we use an LED ring with a radius of 30 mm. (b) Error maps using
distant light assumption (first row) and method in [22] (second row). Both methods result in large errors even for the largest LED baseline.

Figure 9. The input images with the light sources on the LED ring turned on sequentially. The radius of the LED ring is 30 mm and the
object is placed around 400 mm away. The image pair shown in the same column corresponds to LED pairs on the opposite sides of the
ring. As shown, even for the largest LED baselines (the image pair shown in one column), the difference between images is still small.

(b)Distant light 
with zinit = 200mm

(c)[22] with zinit = 200 mm (d)Distant light 
with initialized zIt

(e) [22] with initialized zIt (f) Our method(a) Reconstructed Object 

Figure 10. We show the effectiveness of the first-stage of results by showing the reconstruction for the atlas statue using different
methods with/without initialization using zIt . The performance for both compared methods increases by using zIt . (a)Object profile;
(b)Reconstruction with distant light source assumption; (c)Reconstruction using method in [22]; (d)(c)Reconstruction with the comparison
methods, with zIt as the initialization; (f) Our method.



100 mm. Then we measure the angles between the esti-
mated and ground truth surface normals to quantify the per-
formance. As shown in Fig.8, the initialization using the
differential images helps to improve the reconstruction, es-
pecially for smaller light source baselines. For larger LED
ring radius, the performance of the method proposed in
Sec.3 without initialization is comparable to the method in
Sec.5 with depth initialization. This might be because there
are less local minima for the energy function in Eq.7 for
larger light source baselines. With the same 200 mm depth
initialization, both photometric stereo using distance light
source assumption and the method in [22] induce large er-
rors even for the largest light source baseline.

We evaluate our method for 6, 10, 14 and 18 LEDs with
the same scene setup and LED ring dimension. The mean
surface normal error is 10.42, 3.15, 2.63 and 2.56 degrees
respectively. Note that the error sharply drops as we in-
crease the LEDs from 6 to 10. This shows that the small
light source baseline makes the approximation in Sec.4
valid even for fewer LEDs.

6.3. Real World Results

We apply our algorithm on images captured with LEDs
on a ring with 30mm in diameter. One sequence of capture
images is shown in Fig.9 for a bust statue placed around 400
mm away from the camera. Due to the small ratio between
the LED ring radius and the object-to-camera distance, the
difference between images is very small even for the pair
of LEDs with the largest baselines. Despite the small dif-
ference, our method still performs well as shown in Fig.11
where both the large depth variation between the left and
right shoulders, and the fine grained structures in the frontal
clothes are reconstructed. Note that for small baseline near-
light photometric stereo, the optimization for depths is more
easily trapped in the local minima due to the fact that the
changes in the intensities are small. Thus using just the im-
age intensity I is likely to generate degraded reconstruc-
tions if the initialization is not good, as shown both in Fig.4
with our image formation in Eq.2 , and in Fig.1(d). One
extreme case would be that the baseline for the light source
is zero. In this case the problem becomes the highly ill-
posed shape from shading problem and can be solved only
with prior-knowledge about the shape geometries [2, 29]. In
our case, for near-light photometric stereo with small light
source baselines, the initializations using It helps the op-
timization in Eq.7 process to avoid poor initializations and
keep it from getting trapped in the surrounding local min-
ima in the first stage.

To further validate the effectiveness of the first-stage of
our method, we apply both traditional photometric stereo
under distant lighting assumption and the method in [22]
with the estimation results zIt as the initial depth values.
For distant-light photometric stereo, we use those initialized

depth values to get the lighting directions for all points; for
the method in [22], we use zIt as its initial depth guess for
optimization. As shown in Fig.10, by using zIt, the per-
formance for both compared methods increases. Note in
Fig.10(e), the reconstructed for the right leg of atlas is in
accurate by bending forward, even though we have initial-
ized the depth estimation process with IIt for this case.

We apply our method on other objects with different
scene geometries. Results are shown in Fig.11. The first
two columns of Fig.11 are two input images taken with
lights on the opposite sides of the LED ring turned on. Al-
though the image difference is small, our method is able to
recover both the overall shape with enough depth variations,
such as the shape of face, and fine-grained details, such as
the logo on the tennis shoe. More results are shown in the
supplementary material.

For small light source position changes, we assume that
the global component does not change much. As a result,
we cancel out the global illumination component by sub-
tracting two images captured with close light sources dur-
ing estimating It. Based on this observation, we can fur-
ther refine the reconstruction results by adding another step
where the analytical form of It in Eq.9 is used for optimiz-
ing depths, with zopt in Algorithm 1 as the initial values. We
test this idea for reconstructing the object surface with large
concavity such as the bowl shown in Fig.12. As shown, we
get more robustness against the global illumination compo-
nent by using the differential images It.

7. Limitations
The Lambertian assumption in our method fails when the

surface includes specular reflection component, as can be
seen in the human face reconstruction example in the last
row of Fig.11. This leads to high-frequency artifacts such
as the spike on the reconstructed nose. Another limitation of
our method is that even though using the differential images
leads to more robustness to the global light component as
shown in Fig.12, the global component is not fully modeled
and removed during reconstruction. So the reconstruction
error in the presence of global component is still observable.
One future direction is to include both the BRDF model and
global illumination term into our problem formation.

8. Conclusion
In this paper, we put forward a two-stage near-light pho-

tometric stereo algorithm with circularly placed point light
sources and a pinhole camera. In the first-stage, we opti-
mize the scene depth using the differential images captured
by moving the light source slightly. We show in the paper
that the surface reconstruction becomes less non-linear by
using the differential images. In the second stage, we refine
the estimations using the raw captured images. We validate



Figure 11. Inputs and reconstruction results using the proposed method. From left to right: Two of 24 input images taken with lights on
the opposite sides of the LED ring turned on. Reconstructed meshes viewed from different views.

zIt
zI

zref

(a) One input image (b) Depth estimation using I (c) Depth estimation
using I and It

(d) Reference depth map
using structured light 

(e) Depth profiles

Figure 12. We reconstruct the inner surface of a concave bowl. We get more robustness against the inter-reflection during reconstruction
with the differential images It. From left to right: (a) one of the input images; (b) estimated depth map using the raw images I only; (c)
estimated depth map using both I and differential images It; (d) reference depth map estimated using structured light with global-direct
light separation; (e) 1D depth profiles for different methods (red: using I only; blue: using I and It; black: reference).



that our method is able to get good reconstruction results
even with small baseline point light sources such as a low-
cost LED ring. One future direction is to consider cases
with general BRDFs and global illumination.
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